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Contributing partners: IAP, CUNI, NMA, ELU 
 
1. Introductory remarks 
 
The goal of this deliverable is to construct climate change scenarios for the near future (2021-
2050) for various Central and South-European areas using statistical downscaling methods 
(SDS).  The contributions of partners to this deliverable refer mainly to the following 
techniques: 1) statistical downscaling models based on statistical relationships between local 
predictands and large-scale predictors (NMA, ELU, IAP), calibrated on observed data set and 
then applied to predictors simulated by the global models (GCMs); 2) postprocessing 
procedures of the target variables derived directly from regional climate models (RCMs), 
correcting for systematic errors in the statistical distribution of the target variables (CUNI). 
More details regarding the validation of these statistical methods are presented in the 
CECILIA deliverable D3.3.  

A single GCM/RCM or more (ensemble) GCMs have been used as drivers in the 
statistical downscaling models. The second option allows having a better evaluation of the 
uncertainties associated to the statistical downscaled estimations. In addition to this, a 
comparison with the results obtained by dynamical downscaling is also presented. Details 
about the results obtained by each partner involved in this deliverable are presented in the 
following and a synthesis about the methodologies is presented in Table 1. 
 
 

Table1.  Information on the statistical downscaling techniques used in this study. 
 

Participant ID 
Responsible person 

SDS methodology SDS input SDS output: 
parameter, grid or  
stations 

SDS domain 

IAP 
Martin Dubrovsky 

 Stochastic weather 
generator 
(i) Delta approach 
(ii) Pattern scaling 

 11 GCMs 
from MAGIC

 Monthly temperature 
and precipitation total 
(1 station: Prague) 

 1 station: Prague 

CUNI 
Jiri Miksovsky 

 Dynamical-
empirical 

 ECHAM-
RegCM 

 Tmax, Tmin, 
precipitation 
(daily); 832 grid 
points 

 CECILIA common 
domain 

NMA 
Aristita Busuioc 

 Statistical-based 
on CCA 

8 ENSEMBL
ES-GCMs 
(stream1), 
+ARPEGE 

 Monthly temperature 
(94 stations) and 
precipitation total (16 
stations) 

 LON:20-30°E, 
LAT:43-50°N 
(temperature), 
LON:24-27°E 
 LAT:43-45°N 
(precipitation) 

ELU 
Judit Bartholy 

Stochastic AT-700 hPa 
(2,5°) 

Temperature, 
precipitation 
(1° resolution grid) 

LON: 16-23°E 
LAT: 46-49°N 

 
 
 
 
 
 
 
 



 4

2. IAP contribution 
 
2.1 Introduction 
 
The input weather series for agricultural and hydrological climate change impact experiments in 
Czechia were mostly prepared by the stochastic weather generator Met&Roll (Dubrovský et al., 2000; 
Dubrovský et al., 2004), whose parameters were modified according to the climate change scenarios 
derived from GCM simulations. Two approaches were used to derive the climate change scenarios  at 
the Prague station from the GCM simulations: Delta approach and the Pattern scaling. The Delta 
approach was used to derive the scenarios from the daily GCM outputs. As these are available only for 
shorter time slices, it was applied only for the time slice 2081-2100. More details are presented in the 
CECILIA deliverable D3.5. The pattern scaling method, which is the preferred method, was used 
when the scenarios were derived from the monthly GCM outputs, which is available for much longer 
periods compared to the daily outputs. The results based on this approach corresponding to the years 
2025 and 2050 are presented in this deliverable. 
 
2.2 Scenarios derived by the pattern scaling method from the monthly GCM outputs 
 
The “Pattern Scaling” method (Dubrovsky et al., 2005) is based on an assumption that the change of 
each climatic characteristic ΔX is linearly proportional to the change in global mean temperature ΔTG: 
 

ΔX = ΔX* × ΔTG 
 
where ΔX* is the standardised change of X related to 1 degree rise in global mean temperature. The 
set of standardised changes of all relevant climatic characteristics and for all month is then called the 
standardised climate change scenario. In our case, the relevant climatic characteristics are: daily 
average and extreme temperatures, daily precipitation sum and daily global solar radiation. Humidity 
and wind speed, which are also needed for some impact models, are added by the resampling method 
because of the incompleteness of the GCM databases. The scenarios derived from the monthly GCM 
outputs include changes in the means and standard deviations of monthly values of individual climatic 
characteristics. The changes in temperature means are given in terms of Celsius degrees, changes in all 
other climatic characteristics (including standard deviations of monthly temperatures) are given in 
terms of percentage. 

Advantages of the pattern scaling method include: (i) the standardised scenarios may be derived 
(using the linear regression) from a long GCM-simulated time slice (e.g. 1961-2100) which implies a 
lower sampling error and thereby higher robustness of the scenarios (compared to the Delta approach 
commonly applied to shorter time slices). (ii) The change in global mean temperature, ΔTG, which is 
used to scale the standardised scenarios may be estimated by a simpler (compared to GCM) 
one-dimensional energy-balance model MAGICC (Harvey et al. 1997, Hulme et al. 2000; 
http://www.cgd.ucar.edu/cas/wigley/magicc/), which models evolution of the global temperature in 
response to chosen emission scenario, climate sensitivity and several other model parameters. This 
approach allows scaling of the standardised scenarios derived from GCMs run at a single emission 
scenario for a set of user-selected combinations of emission scenario and climate sensitivity. In result, 
by using a set of standardised scenarios derived from several GCMs scaled by a suitably selected set 
of values of the scaling factor (ΔTG), the pattern scaling method allows to effectively account for 
uncertainties in these two major driving constraints. The use of the pattern scaling method thus allows 
to bypass the two shortcomings of the available set of GCM simulations: (i) The outputs from existing 
GCM simulations (Fig.2.1) show, that the ΔTG projections till 2100 based on available GCM set do 
not account for the uncertainty in climate sensitivity (which is a topic of broad scientific discussions). 
(ii) The GCM database does not include all 4 markers emission scenarios in individual GCMs. 
 
Construction of the standardised scenarios: The standardised scenarios are derived from the 
GCM-simulated time series of monthly averages of climatic characteristics using a linear regression, 
in which the global mean temperature is the independent variable, and the respective climatic 
characteristic is a dependent variable. The standardised scenarios for the CECILIA project were 
derived from the most recent GCM simulations (SRES-A2 emission scenario) made for the IPCC 4th 
Assessment Report (IPCC, 2007). Specifically, SRES-A2 runs were used. This emission scenario 
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assumes the highest GHG emissions of the four marker emission scenarios, so that it implies highest 
signal-to-noise ratio and thereby the lowest error in estimating the standardised scenario. The resultant 
standardised scenario may be scaled for more “optimistic” emission scenarios (= lower emissions 
scenarios); the scaling for more pessimistic emission scenarios (= higher emissions scenarios) than 
those used for estimating the standardised scenario is not recommended: this would imply 
extrapolation, which is loaded by much higher error.  
 
Choice of the GCMs: Figure 2.2 shows the standardised scenarios for temperature and precipitation 
at Prague for 11 GCMs. The differences between scenarios derived from individual GCMs are due to 
differences in the GCMs (related to different parameterization of sub-grid phenomena, different spatial 
resolution, different representations of Earth surface, etc) and natural climate variability (the latter 
may be effectively modelled by the stochastic weather generator, which is linked to the climate change 
scenarios). To account for the inter-GCM variability in the given climate change impact analysis, we 
can either use scenarios from all available GCMs, or to use a subset of GCMs which consists of those 
GCMs which are among the best (in terms of the fit between observed climate and GCM-simulated 
climate) and represent the inter-model variability. Considering the amount of GCMs, we used a 
latter approach. Based on the earlier validation tests (Dubrovsky et al. 2005) the triplet of GCMs was 
used to define the standardised scenarios: HadCM3, ECHAM5 and NCAR-PCM, which satisfy the 
above conditions (simultaneously, the benefit of this triplet is that the chosen GCMs belong to the 
most frequently worldwide used GCMs, which allows comparison of results obtained with these 
scenarios with results of other authors.  
 
The results for the Prague station show that the temperature will rise for all months of the 
year. The greatest increase will occur in winter and late summer. The precipitation is 
projected to significantly decrease in summer and early autumn. On the other hand, slight 
increase is probable to occur during the rest of the year. 
 
Choice of the values of the scaling factor, ΔTG: The increase in global mean temperature ΔTG was 
estimated by one-dimensional energy-balance model MAGICC. To account for the uncertainties in 
climate sensitivity and emission scenarios, all possible combinations of the four marker emission 
scenarios (SRES-A1, SRES-A2, SRES-B1 and SRES-B2) and three values of climate sensitivity (low 
= 1.5 K, middle = 2.6 K, high = 4.5 K) were used to drive MAGICC while estimating the value of 
ΔTG. Three of the 12 resultant values were used (found in the bottom line of the table): the LOW 
(highlighted in yellow colour) is the lowest of the four values related to the low climate sensitivity and 
4 emission scenarios, the MIDDLE (highlighted in blue) is the median of the four values related to the 
middle climate sensitivity, and the HIGH (highlighted in green) is the highest of the four values 
related to the high climate sensitivity. 

 
Tab.2.1  The increase in global mean temperature (with respect to 1961-1990) for three values of 
climate sensitivity (low/mid/high: 1.5, 2.6, 4.5 K), four marker emission scenarios (SRES-A1, -A2, 
-B1, -B2), and three futures (2025, 2050, 2100). The low (optimistic), middle and high (= pessimistic) 
estimates of ΔTG are given in the bottom row of the table (SUM)  
 

 2025 2050 

 low / mid / high low / mid / high 
SRES-A1 0.60 / 0.85 / 1.17 1.02 / 1.47 / 2.07 
SRES-A2 0.56 / 0.80 / 1.10 1.03 / 1.48 / 2.08 
SRES-B1 0.49 / 0.70 / 0.98 0.76 / 1.11 / 1.57 
SRES-B2 0.53 / 0.75 / 1.05 0.84 / 1.22 / 1.73 
SUM 0.49 / 0.78 / 1.17 0.76 / 1.35 / 2.08 
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Figure 2.1 Increase of the global mean temperature according to 11 GCMs run under SRES-A2 
scenarios and estimate of ΔTG by MAGICC model (yellow dots) for the SRES-A2 emission scenarios 
and 4 values of the climate sensitivity (K).  
 

 
Figure 2.2 Standardised scenarios of changes in temperature (top) and precipitation (bottom) at 
Prague according to 11 GCMs run under SRES-A2 emission scenario. The changes relate to 1K rise in 
global mean temperature.  
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3. CUNI contribution 
 
3.1. Introduction  
 
Charles University’s (CUNI’s) contribution to the provision of climate change scenarios is based on the analysis of the 
outputs of the RegCM3 model, developed at the Abdus Salam International Centre for Theoretical Physics and run at 
CUNI. A description of the model and its integration domain is provided in the CECILIA deliverable D2.1; basic 
validation of the run driven by the ECHAM5 GCM, as well as simulated changes in mean temperature and precipitation 
for the periods 2021-2050 and 2071-2100, are presented in deliverable D2.6.  
 Along with scenarios based on raw outputs of the RegCM model, series subjected to postprocessing procedure, 
correcting for systematic errors in the statistical distribution of the target variables, were also used (these are referred to 
as postprocessed series in the following text). The corrective algorithm applied was based on the modified method of 
Piani et al. (2009); specific details are given in deliverable D3.2. The validation was carried out for the CECILIA 
common domain, covering parts of Austria, Czech Republic, Hungary and Slovakia – see deliverable D3.1 for 
specification of the domain and procedures used to generate the respective gridded datasets of observed values. The 
outputs of the RegCM model, both original and postprocessed, were IDW-interpolated onto the grid used by the set of 
observations in the CECILIA common domain. 
 The selected illustrative results here are presenting absolute or relative differences between the statistics of 
interest in the simulated climate for the period 2021-2050 and for the control period 1961-1990 (former minus/divided 
by the latter). For analogical analysis concerning expected changes in the period 2071-2100, see deliverable D3.5. 
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Figure. 3.1 Grid points of CECILIA common validation domain (identification numbers located over the respective 
gridboxes), drawn over the orography of the RegCM model (m)  
 
The results are presented either in a form of maps covering the entire region of Central Europe (raw model outputs 
only) or graphs presenting the values of the analysed statistics for individual grid points of the validation domain shown 
in Fig. 3.1 (postprocessed data are shown along with their equivalents for unprocessed outputs of the RegCM model, to 
demonstrate the eventual contrast between the two). For analogical results derived for the period 2071-2100, see 
deliverable D3.5. 
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3.2. Changes of mean values of temperature and precipitation 
 
The climate change signal is rather weak in Central Europe for precipitation in an annual average (Figure 3.2, left). 
Examining different parts of the year separately, the change is revealed to be rather small on average in DJF and JJA 
seasons and statistical postprocessing in the applied form does have little effect on its magnitude (Figure 3.3). A slight 
but systematic precipitation decrease was found for the MAM season. In the SON season, when the relatively highest 
increase was simulated, correction does further amplify it. This feature becomes even more evident for the period 2071-
2100 (see deliverable D3.5). 

The annual mean temperature increase of about 1°C was simulated in the CE domain (Figure 3.2, right). 
Similar increase was also typical for daily maximum and minimum temperature, annually as well as for individual 
seasons; postprocessing slightly amplifies the values derived from the raw model outputs (Figure 3.4). Postprocessing 
also brings additional spatial variability into the simulated fields of temperature increase, in contrast to the more 
geographically uniform values derived from raw model data. 

             
 
Figure 3.2 Absolute changes of precipitation (left, mm/day) and mean temperature (right, °C) in the CE region, for the 
period 2021-2050 relative to 1961-1990 (annual mean). 
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Figure 3.3 Precipitation change in different seasons, and the influence of postprocessing, for the period 2021-2050 
relative to 1961-1990. Blue graph represents change in the original data, red in the postprocessed series; the horizontal 
axis shows identification numbers of the gridpoints in the validation domain. 
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Figure 3.4 Maximum (top) and minimum (bottom) temperature change in DJF (left) and JJA (right) seasons, and the 
influence of postprocessing, for the period 2021-2050 relative to 1961-1990. Blue graph represents change in the 
original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid points in the 
validation domain. 
 
3.3. Changes in the spread of values 
 
While the signal describing future changes of variance is rather mixed for the temperature characteristics, a tendency 
for increase of precipitation variance (or other measures describing the spread of values) was found in most seasons, 
though this effect is still rather weak in the period 2021-2050. Postprocessing of the series changes the results very little 
with regard to the variance of daily data, as Figure 3.5 shows for the winter season.  
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Figure 3.5. Change of standard deviation of daily precipitation sums in the DJF season, and the influence of 
postprocessing. Blue graph represents change in the original data, red in the postprocessed series; the horizontal axis 
shows identification numbers of the grid points in the validation domain. 
 
3.4. Changes in the extreme tails of the statistical distributions 
 
The changes of the values of the highest or lowest quantiles of daily temperature or precipitation do not precisely 
follow the evolution of mean values. In Figures. 3.6,7, 8, this is shown on selected examples, along with the effects of 
postprocessing. Note, for example, the strong increase for the 1% quantile of minimum daily temperature in winter 
(Figure 3.7), well above the rise of its mean value.  
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Figure 3.6. Changes of the value of the 99% quantile of maximum daily temperature, JJA season. Blue graph 
represents change in the original data, red in the postprocessed series; the horizontal axis shows identification numbers 
of the grid points in the validation domain. 
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Figure 3.7 Changes of the value of the 1% quantile of minimum daily temperature, DJF season. Blue graph represents 
change in the original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid 
points in the validation domain. 
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Figure 3.8. Changes of the value of the 99% quantile of daily precipitation, DJF season. Blue graph represents change 
in the original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid points 
in the validation domain. 
 
3.5. Changes of special derived characteristics 
  
Influence of the simulated climate change on selected characteristics related to the frequency of (non)exceedance of 
characteristic values of temperature or precipitation is shown for a few selected examples in this section. There seems 
to be a mild tendency towards increase of heavy precipitation events in summer (Figure 3.9). There is an increase of the 
number of tropical days (maximum temperature over 30°C), shown in Figure 3.10. Another distinct effect of the 
simulated climate change is the drop in the number of winter days when temperature does fall under the freezing point 
(Figure 3.11).  
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Figure 3.9 Change of the number of days with precipitation over 20 mm in JJA season. Blue graph represents change 
in the original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid points 
in the validation domain. 
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Figure 3.10 Change of the number of days with maximum temperature over 30 °C in JJA season. Blue graph represents 
change in the original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid 
points in the validation domain. 
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Figure 3.11 Change of the number of days with minimum temperature below 0 °C in DJF season. Blue graph 
represents change in the original data, red in the postprocessed series; the horizontal axis shows identification numbers 
of the grid points in the validation domain.  
 
 
 
4. NMA contribution 
  
4.1. Methodology overview 

 

The statistical downscaling models (SDMs) used by the NMA in the CECILIA project are based on the canonical 
correlation analysis (CCA) technique (Von Storch et al., 1993, Busuioc et al., 1999, 2006). These models have been 
developed for the mean temperature (94 stations covering the entire Romania) and precipitation total (16 stations 
covering a southeastern area, used for the impact studies in CECILIA).  In a previous work (Busuioc et al., 2006) has 
been found that, in case of precipitation,  it is difficult to find a single skilful SDM for the entire Romanian area, due to 
the complex Romanian topography. More skilful SDMs can be found over smaller regions. Therefore, the SDMs 
developed by NMA in the CECILIA project refer to a smaller area (Figure 4.1) used for impact studies presented in the 
WP5 and WP6. 

Compared to previous studies, when the SDMs have been mainly developed on seasonal scale, taking into 
account the necessities of the impact studies, these models have been developed on monthly scale. According to the 
CCA techniques presented in previous papers (Busuioc et al., 1999, 2006), the inputs in the SDM (predictors and 
predictands) are considered as anomalies projected on the EOF (empirical orthogonal functions) space, retaining the 
time series associated to the most important EOFs, which explain the most part of the observed variance, used then as 
inputs in the CCA. In the frame of CECILIA project, the monthly anomalies are considered together, stratified on the 
four seasons (DJF, MMA, JJA and SON) for precipitation and on cold (November to April) and warm (May to 
October) seasons in case of temperature. 

The temperature field at 850 mb (T850) has been considered as predictor for temperature while the sea level 
pressure (SLP), geopotential heights at 500 mb (H500) and specific humidity at 850 mb (separately or in combination) 
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have been tested as predictors for precipitation. It has been found that the SDMs for temperature present a high and 
stable skill while for precipitation, even if the skill is significant, the magnitude of the observed anomalies is not always 
very well reproduced. More details about the SDM validation are presented in the deliverable D.3.3. 

In order to obtained the scenarios for the time slices 2021-2050 and 2070-2099, the skilful  SDMs calibrated 
over the period 1961-1990 have been applied to the GCM outputs from 8 ENSEMBLES GCMs (stream1 simulations, 
http://cera-www.dkrz.de/WDCC) under the A1B emission scenario. The ARPEGE outputs have also been used for the 
temperature scenarios until now, but only for the time slice 2070-2099 (see D3.5). The GCMs used as inputs in the 
SDMs are: EGMAM (FUB) -3 runs, ECHAM5 -3 runs, BCM2 and INGV. The ensemble mean of the SDM projections 
based on these GCM outputs have been calculated in order to reduce the uncertainties. The full range of the SDM 
projections for all GCM inputs is also presented.  The results for the time slice 2021-2050 are presented in the 
following. 
 
 
 

  

 
 
Figure 4.1 The location of the stations used in developing the SDMs for precipitation.  

 
 
4.2. Change in the mean temperature 
 
Figure 4.2 shows the temperature changes at the 94 Romanian stations represented as ensemble mean of the 8 SDM 
projections, averaged for each season (winter, spring summer and autumn). It can be seen that the highest values are 
obtained for summer (between 1.20C and 1.90C) with the highest magnitude over the southern-southwestern regions. 
For the other seasons, a similar climate signal has been obtained (changes between 0.80C and 1.50C) with the highest 
magnitude over the northwestern regions. This ensemble averages represents the most likely value from the considered 
SDS projections but there are large differences from one projection to another, depending on the driver GCM. In Table 
1 the spatial average over Romania for various SDs projections is presented, showing that, over the period 2021-2050, 
under the A1B scenario, it expected a temperature change ranging between 0.60C and 1.90C (mean 1.00C) for 
winter, between 0.50C and 1.70C (mean 1.10C) for spring,  between 1.20C and 2.10C (mean 1.60C) for summer and 
between 0.70C and 1.80C (mean 1.40C) for autumn. This result is in agreement with those obtained from the ensemble 
mean of 7 ENSEMBLES GCMs, except for winter when the SDS signal is lower (Figure 4.3). An example about the 
spatial pattern of temperature change in summer derived from the RCM simulations (ensemble average) is presented in 
Figure 4.4.  A more reliable comparison has been made between SDMS driven by the ECHAM5-run 3 and three 
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ENSEMBLES RCMs driven by the same GCM (details in Figure 4.3). It can be seen that there are differences between 
the RCM signals, the SDS signal being included between RCM ranges and it is more similar with the MPI-REMO 
signal, except for winter. 

It is known that the SDS credibility is dependent also by the performance of the driver GCM in projection of 
change in the predictor. It is very difficult to assess the future projections, the only way being the assessment of GCM 
performance in simulating the predictor variability under the current climate conditions. In figure 4.5, the difference 
between the T850 spatial average derived from the GCM current climate simulations and corresponding observed 
(reanalysis) values. The ECHAM5 GCMs reproduce the best the current T850 conditions as magnitude (figure 4.4) and 
spatial patterns (given by the spatial correlations, not shown), The FUB GCMs underestimate the summer values and 
the INGV overestimate them.  
 
 
 

Winter 2021-2050 

 
 

Spring 2021-2050 

 

Summer 2021-2050 

 
 

Autumn 2021-2050 

 

 

Figure 4.2 Change of the seasonal temperature mean (2021-2050 vs. 1961-1990) under the A1B emission scenario at 
94 stations in Romania (oC), represented as ensemble mean over SDM projections from the 8 ENSEMBLE GCM 
simulations (stream 1).   

.  
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      Table 4.1 Spatial average (over 94 stations) of the monthly temperature change in Romania 
      for the 2021-2050 against 1961-1990, under A1B scenarios derived from the SDM projections 
      driven by various GCMs. 

  BCM2 EH5-1 EH5-2 EH5-3 FUB1 FUB2 FUB3 INGV 
Winter 0.7 0.6 1.0 0.7 1.6 1.0 1.9 0.9 
Spring 1.1 0.5 1.3 1.0 1.7 1.2 1.0 0.8 
Summer 1.8 1.5 1.7 1.4 1.6 1.2 1.4 2.1 
Autumn 1.0 1.5 1.8 1.7 1.4 0.7 1.6 1.3 
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Figure 4.3  Change of the seasonal mean temperature (2021-2050 vs. 1961-1990) averaged over Romania derived 
directly from various ENSEMBLES RCMs and indirectly through SDM, driven by the ECHAM5-3  (left). On the right, 
the ensemble mean of the 8 SDM projections in comparison with the ensemble mean of 7 RCMs.  
 
 
 

  
Figure 4.4 Change of the summer temperature mean (2021-2050 vs. 1961-1990) under the A1B emission scenario 
represented as ensemble mean over 7 ENSEMBLES RCMS.   
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Figure 4.5 Differences between the monthly means of  T850 (oC) derived from observations (reanalysis) and 
ENSEMBLES GCM simulations (stream 1): 1961-1990. 
 
 
Precipitation change 
 
As it has been presented in the deliverable D3.3, the sea level pressure field covering the area 10-450E, 30-550N was 
found as the best predictor for precipitation in all the seasons (DJF, MAM, JJA, SON), with the highest skill for winter 
and lower for summer. Even if, the SDM does not reproduces always very well the magnitude of the observed 
precipitation anomalies, the temporal evolution and the long term mean is quite well reproduced. This result has been 
proved by the reconstruction of the monthly precipitation anomalies over the independent data set 1991-2007 with the 
model fitted over the period 1991-1990. It was found that the observed change in monthly precipitation over 1991-2007 
compared to 1961-1990 is well reproduced by the SDM (more details in the deliverable D3.3).  

The optimum model for each season (optimum combination of EOFs/CCAs) has been applied to the SLP 
changes for two time slices (2021-2050 and 2070-2099) derived from 8 GCMs (ENSEMBLES, stream1, see section 
4.1). The ensemble average has been computed and the results for the first time slice are presented in Table 4.2. The 
corresponding results for the 2070-2099 time slice are presented in the deliverable D3.5. The climate signal is similar 
from one SDM projection to another, apart from the magnitude, giving some robustness to the results (see Table 4.3). It 
can be concluded that, under the A1B scenario, the precipitation is likely to slightly decrease in winter months over 
the entire region and over plain area in some other months. Not significant change is generally expected during the 
spring, summer and autumn, except for some increase in May.  

In order to express better the uncertainty associated to the SDS signal, the spatial average of the seasonal SDS 
signal derived from the projection using the ECHAM5-3 driver, has been compared to the corresponding signal derived 
from three RCMs driven by the same GCM, including their average  (Figure 4.6). It can bee seen that the two signals 
are the most similar for summer. This result is in agreement with those obtained in the ENSEMBLE project (van der 
Linden and Mitchel, 2009) and presented in the IPCC AR4 (IPCC, 2007), showing that the summer signal is coherent 
between various RCM, GCMs over the southern Europe, that gives more robustness to this result. The SDS signal is 
also in agreement with the results obtained by the high resolution RegCM (10 km) simulations presented in WP2. 

The added value of the SDS technique is its capability to be easily applied to outputs from various GCM 
experiments (being computationally inexpensive), that allows to assess the uncertainty of regional climate 
change estimations. 
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Table 4.2  Change of  monthly precipitation  (%) at 16 stations from the southeastern Romania  derived as ensemble 
average over SDM projections from 8 ENSEMBLE GCM: 2021-2050 vs. 1961-1990, A1B scenario. 
 

Station  Winter  Spring  Summer  Autumn 
 XII I II III IV V VI VII VIII IX X XI 
Câmpina -16 -17 -18 -17 -6 5 -6 -2 -2 -4 -9 -6
Călăraşi -8 -11 -13 -6 -3 6 -12 -11 -8 -4 -8 -6
Fundata -6 -9 -11 -8 -4 6 -2 0 0 -6 -8 -11
Fundulea -11 -15 -15 -13 -6 6 -14 -10 -10 -3 -10 -7
Giurgiu -11 -12 -15 -1 1 12 -11 -6 -4 -4 -10 -6
Griviţa -10 -14 -13 -15 -7 5 -13 -10 -7 -5 -12 -8
Int. 
Buzăului -4 -7 -11 -7 -5 5 -6 -3 -3 -5 -8 -14
Piteşti -13 -15 -17 -14 -4 8 -9 -5 -7 -5 -10 -7
Ploieşti -14 -16 -18 -19 -7 6 -9 -5 -4 -3 -10 -6
Predeal -8 -9 -12 -8 -5 6 -5 -4 -4 -6 -8 -12
Rm. Sărat -15 -14 -14 -12 -4 7 -9 -5 -5 -4 -13 -7
Sinaia -14 -12 -16 -18 -6 5 -2 1 1 -6 -8 -7
Târgovişte -14 -14 -17 -17 -6 6 -10 -7 -9 -5 -11 -7
Tr. 
Măgurele -11 -12 -15 0 2 13 -10 -2 0 -4 -10 -5
Urziceni -11 -14 -13 -24 -10 5 -13 -11 -8 -4 -10 -8
Vf. Omu -3 -10 -10 3 -4 2 -5 -1 0 -5 -6 -13

 
 
 
 
 
 
Table 4.3  Spatial average (over the 16 stations presented in Table 4.2) of monthly precipitation change (%) derived 
from the SDM projections driven by various ENSEMBLE GCMs (stream 1): 2021-2050 vs. 1961-1990, A1B scenario.  
 

Winter Spring Summer Autumn  
DriverGCM  XII I II III IV V VI VII VIII IX X XI 

BCM2 -25 2 -30 -15 0 6 -5 -9 13 0 -9 -17
EH5-1 13 -29 -21 19 7 -3 -16 2 -11 -5 -10 -30
EH5-2 -21 -22 -8 21 -5 2 -2 -11 -13 3 -39 -1
EH5-3 16 -19 0 -35 -10 17 -8 -4 -6 6 -1 24
FUB-1 -17 1 -18 -17 2 7 -15 -12 -4 -7 6 0
FUB-2 -23 -4 -14 -33 -11 21 -4 -6 -8 -20 -7 -15
Fub-3 -12 -9 -9 -11 -11 -8 -21 -1 -13 -18 -13 -9
INGV -16 -19 -14 -17 -7 7 3 2 7 6 -1 -17
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Figure 4.6 Spatial average of the seasonal precipitation change (%) over the area 24-27E, 43-45N covering the 16 
stations presented in figure 4.1, derived from three ENSEMBLES RCMs and SDS driven by the EHAM5-3 GCM.   
The RCM average (mean) is also presented. 
 
 
 
5) ELU Contribution  
 
Introduction 
 
The applied stochastic downscaling method has two key elements. The first element includes large-scale circulation of the 
atmosphere and the second element represents a linkage between local surface variables and large-scale circulation. The 
linkage is expressed by a stochastic model using an observational data series. Then, this model may be utilized with GCM 
outputs characterizing atmospheric circulation (Mearns et al., 1999). 
 Stochastic downscaling methods are based on the fact that there is considerable stochastic relationship between the 
large-scale atmospheric circulation and the meteorological, hydrological (hydrometeorological) variables. This relationship 
is estimated from observed data and then is used with large-scale circulation available from GCM output. Thus, estimation 
can be obtained for local meteorological and hydrometeorological parameters under a new warmer climate. (Bogárdi et al., 
1993). The model was developed and applied for the Carpathian Basin. Computations were carried out using ECHAM 
driven RegCM regional climate model outputs (25 km horizontal resolution). 
 Evaluation of precipitation is a much more complicated task than temperature since it has a spatial-temporal 
intermittence (Bartholy et al., 1995). Therefore, it is necessary to analyze both the probability of precipitation occurrence 
and its magnitude in wet periods.  
 
Stochastic downscaling methodology in the frame of CECILIA project 
 
First, the stochastic downscaling technique was applied using the ERA-40 datasets for the period 1961-1990. As it is 
mentioned above, the method is based on the fact that there is considerable stochastic relationship between the large-scale 
atmospheric circulation and the meteorological variables (e.g., temperature and precipitation). This relationship was 
estimated from observed data (i.e., ERA-40 datasets) and then is used with large-scale circulation available from 
GCM/RCM outputs. Thus, estimation is obtained for local meteorological parameters under new climate conditions.  

Large-scale circulation is characterized by macrocirculation (MCP) types of AT-700 hPa geopotential height 
data (at 00 UTC) for the region covering the following region with 325 (= 13x25) grid points: 35°-65°N, 30°W-30°E. 
The MCP types are defined using cluster analysis on a seasonal basis to the corresponding meteorological variables, 
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i.e., temperature or precipitation grid point time series for the region covering Hungary (4x8 = 32 grid points, lat-long: 
46°-49°N, 16°-23°E). 
 
Analysis 
 
The statistical downscaling technique was applied for the Carpathian basin using the scenario experiments of RegCM 
for 3 time slices: 1961-1990, 2021-2050, 2071-2100. AT-700 hPa geopotential height data (at 00 UTC) from the 
ECHAM-driven RegCM experiments with 25 km horizontal resolution served as the predictor variable for the region 
covering the previously defined large-scale region. Gridded temperature and precipitation fields for the region covering 
Hungary (32 grid points, lat-long: 46°-49°N, 16°-23°E) were generated using the downscaling technique, and compared 
to the results of the RegCM experiments using 10 km horizontal resolution (and using the same 25 km horizontal 
resolution ECHAM-driven RegCM simulations that provided input fields for the stochastic model). Results of the 
2021-2050 period are presented in this deliverable. 
 
List of the analyzed parameters: 
1. Coded large-scale circulation 40 types (10 types/season)  
2. Seasonal averages of cluster centers (AT-700 hPa) 
3. Time series of daily codes (1961-1990, 2021-2050, 2071-2100) – seasonal frequency distribution (Figure 5.1.) 
 
Temperature 
1. Seasonal mean change (Figure 5. 2a) 
2. Seasonal change of standard deviation (Fig. 5.2b) 
 
Precipitation 
1. Seasonal mean (Figure 5.3a.) 
2. Seasonal standard deviation 
3. Seasonal mean on wet days only (Figure 5.3b.) 
4. Seasonal frequency of wet days (Figure 5. 4.) 
 
 
Summary of the results of the stochastical-dynamical  downscaling model for 2021-2050, A1B scenario using RegCM 
model simulations for Hungary: only small changes are expected in temperature and precipitation conditions as it is 
shown in Figures 5.2-5.4. 
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Figure 5.1: Seasonal distribution of MCP types using the ECHAM-driven simulation fields for 1961-1990 and 2021-
2050.  
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Figure 5.2: Spatial average of seasonal mean simulated temperature change (a) and standard deviation change of 
simulated temperature (b) for Hungary, for 2021-2050 relative to 1961-1990.  
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Figure 5.3: Spatial average of seasonal mean change of simulated precipitation (a) and  of simulated wet-day 
precipitation (b) for Hungary, for 2021-2050 relative to 1961-1990.  
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Figure 5.4: Spatial average of seasonal mean simulated frequency change of precipitation days (R > 1 mm) for 
Hungary, for 2021-2050 relative to 1961-1990.  
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