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1. Introductory remarks

The goal of this deliverable is to construct climate change scenarios for the near future (2021-
2050) for various Central and South-European areas using statistical downscaling methods
(SDS). The contributions of partners to this deliverable refer mainly to the following
techniques: 1) statistical downscaling models based on statistical relationships between local
predictands and large-scale predictors (NMA, ELU, IAP), calibrated on observed data set and
then applied to predictors simulated by the global models (GCMs); 2) postprocessing
procedures of the target variables derived directly from regional climate models (RCMs),
correcting for systematic errors in the statistical distribution of the target variables (CUNI).
More details regarding the validation of these statistical methods are presented in the
CECILIA deliverable D3.3.

A single GCM/RCM or more (ensemble) GCMs have been used as drivers in the
statistical downscaling models. The second option allows having a better evaluation of the
uncertainties associated to the statistical downscaled estimations. In addition to this, a
comparison with the results obtained by dynamical downscaling is also presented. Details
about the results obtained by each partner involved in this deliverable are presented in the
following and a synthesis about the methodologies is presented in Table 1.

Tablel. Information on the statistical downscaling techniques used in this study.

Participant ID SDS methodology [SDS input  [SDS output: SDS domain
Responsible person parameter, grid or
stations
AP Stochastic weather | 11 GCMs Monthly temperature |1 station: Prague
Martin Dubrovsky |generator from MAGICland precipitation total
(i) Delta approach (1 station: Prague)
(ii) Pattern scaling
CUNI Dynamical- ECHAM- Traxs Tmins CECILIA common|
Jiri Miksovsky empirical RegCM precipitation domain
(daily); 832 grid
oints
NMA Statistical-based |8 ENSEMBL | Monthly temperature | LON:20-30°E,
Aristita Busuioc on CCA ES-GCMs (94 stations) and LAT:43-50°N
(streaml), [precipitation total (16 |(temperature),
+ARPEGE |[stations) LON:24-27°E
LAT:43-45°N
(precipitation)
ELU Stochastic AT-700 hPa |Temperature, LON: 16-23°E
Judit Bartholy (2,5°) precipitation LAT: 46-49°N
(1° resolution grid)




2. IAP contribution
2.1 Introduction

The input weather series for agricultural and hydrological climate change impact experiments in
Czechia were mostly prepared by the stochastic weather generator Met&Roll (Dubrovsky et al., 2000;
Dubrovsky et al., 2004), whose parameters were modified according to the climate change scenarios
derived from GCM simulations. Two approaches were used to derive the climate change scenarios at
the Prague station from the GCM simulations: Delta approach and the Pattern scaling. The Delta
approach was used to derive the scenarios from the daily GCM outputs. As these are available only for
shorter time slices, it was applied only for the time slice 2081-2100. More details are presented in the
CECILIA deliverable D3.5. The pattern scaling method, which is the preferred method, was used
when the scenarios were derived from the monthly GCM outputs, which is available for much longer
periods compared to the daily outputs. The results based on this approach corresponding to the years
2025 and 2050 are presented in this deliverable.

2.2 Scenarios derived by the pattern scaling method from the monthly GCM outputs

The “Pattern Scaling” method (Dubrovsky et al., 2005) is based on an assumption that the change of
each climatic characteristic AX is linearly proportional to the change in global mean temperature ATg:

AX = AX* x ATg

where AX* is the standardised change of X related to 1 degree rise in global mean temperature. The
set of standardised changes of all relevant climatic characteristics and for all month is then called the
standardised climate change scenario. In our case, the relevant climatic characteristics are: daily
average and extreme temperatures, daily precipitation sum and daily global solar radiation. Humidity
and wind speed, which are also needed for some impact models, are added by the resampling method
because of the incompleteness of the GCM databases. The scenarios derived from the monthly GCM
outputs include changes in the means and standard deviations of monthly values of individual climatic
characteristics. The changes in temperature means are given in terms of Celsius degrees, changes in all
other climatic characteristics (including standard deviations of monthly temperatures) are given in
terms of percentage.

Advantages of the pattern scaling method include: (i) the standardised scenarios may be derived
(using the linear regression) from a long GCM-simulated time slice (e.g. 1961-2100) which implies a
lower sampling error and thereby higher robustness of the scenarios (compared to the Delta approach
commonly applied to shorter time slices). (i) The change in global mean temperature, ATg, which is
used to scale the standardised scenarios may be estimated by a simpler (compared to GCM)
one-dimensional energy-balance model MAGICC (Harvey et al. 1997, Hulme et al. 2000;
http://www.cgd.ucar.edu/cas/wigley/magicc/), which models evolution of the global temperature in
response to chosen emission scenario, climate sensitivity and several other model parameters. This
approach allows scaling of the standardised scenarios derived from GCMs run at a single emission
scenario for a set of user-selected combinations of emission scenario and climate sensitivity. In result,
by using a set of standardised scenarios derived from several GCMs scaled by a suitably selected set
of values of the scaling factor (ATg), the pattern scaling method allows to effectively account for
uncertainties in these two major driving constraints. The use of the pattern scaling method thus allows
to bypass the two shortcomings of the available set of GCM simulations: (i) The outputs from existing
GCM simulations (Fig.2.1) show, that the AT projections till 2100 based on available GCM set do
not account for the uncertainty in climate sensitivity (which is a topic of broad scientific discussions).
(i1)) The GCM database does not include all 4 markers emission scenarios in individual GCMs.

Construction of the standardised scenarios: The standardised scenarios are derived from the
GCM-simulated time series of monthly averages of climatic characteristics using a linear regression,
in which the global mean temperature is the independent variable, and the respective climatic
characteristic is a dependent variable. The standardised scenarios for the CECILIA project were
derived from the most recent GCM simulations (SRES-A2 emission scenario) made for the IPCC 4"
Assessment Report (IPCC, 2007). Specifically, SRES-A2 runs were used. This emission scenario
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assumes the highest GHG emissions of the four marker emission scenarios, so that it implies highest
signal-to-noise ratio and thereby the lowest error in estimating the standardised scenario. The resultant
standardised scenario may be scaled for more “optimistic” emission scenarios (= lower emissions
scenarios); the scaling for more pessimistic emission scenarios (= higher emissions scenarios) than
those used for estimating the standardised scenario is not recommended: this would imply
extrapolation, which is loaded by much higher error.

Choice of the GCMs: Figure 2.2 shows the standardised scenarios for temperature and precipitation
at Prague for 11 GCMs. The differences between scenarios derived from individual GCMs are due to
differences in the GCMs (related to different parameterization of sub-grid phenomena, different spatial
resolution, different representations of Earth surface, etc) and natural climate variability (the latter
may be effectively modelled by the stochastic weather generator, which is linked to the climate change
scenarios). To account for the inter-GCM variability in the given climate change impact analysis, we
can either use scenarios from all available GCMs, or to use a subset of GCMs which consists of those
GCMs which are among the best (in terms of the fit between observed climate and GCM-simulated
climate) and represent the inter-model variability. Considering the amount of GCMs, we used a
latter approach. Based on the earlier validation tests (Dubrovsky et al. 2005) the triplet of GCMs was
used to define the standardised scenarios: HadCM3, ECHAMS and NCAR-PCM, which satisfy the
above conditions (simultaneously, the benefit of this triplet is that the chosen GCMs belong to the
most frequently worldwide used GCMs, which allows comparison of results obtained with these
scenarios with results of other authors.

The results for the Prague station show that the temperature will rise for all months of the
year. The greatest increase will occur in winter and late summer. The precipitation is
projected to significantly decrease in summer and early autumn. On the other hand, slight
increase is probable to occur during the rest of the year.

Choice of the values of the scaling factor, ATg: The increase in global mean temperature ATg was
estimated by one-dimensional energy-balance model MAGICC. To account for the uncertainties in
climate sensitivity and emission scenarios, all possible combinations of the four marker emission
scenarios (SRES-A1, SRES-A2, SRES-B1 and SRES-B2) and three values of climate sensitivity (low
= 1.5 K, middle = 2.6 K, high = 4.5 K) were used to drive MAGICC while estimating the value of
ATg. Three of the 12 resultant values were used (found in the bottom line of the table): the LOW
(highlighted in yellow colour) is the lowest of the four values related to the low climate sensitivity and
4 emission scenarios, the MIDDLE (highlighted in blue) is the median of the four values related to the
middle climate sensitivity, and the HIGH (highlighted in green) is the highest of the four values
related to the high climate sensitivity.

Tab.2.1 The increase in global mean temperature (with respect to 1961-1990) for three values of
climate sensitivity (low/mid/high: 1.5, 2.6, 4.5 K), four marker emission scenarios (SRES-A1, -A2,
-B1, -B2), and three futures (2025, 2050, 2100). The low (optimistic), middle and high (= pessimistic)
estimates of ATg are given in the bottom row of the table (SUM)

2025 2050
low / mid / high low / mid / high
SRES-Al 0.60/0.85/1.17 | 1.02/1.47/2.07
SRES-A2 0.56/0.80/1.10 | 1.03/1.48/2.08
SRES-B1 0.49/0.70/0.98 | 0.76/1.11/1.57
SRES-B2 0.53/0.75/1.05 | 0.84/1.22/1.73
SUM 0.49/0.78 / 1.17 | 0.76 /1.35/ 2.08
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Figure 2.1 Increase of the global mean temperature according to 11 GCMs run under SRES-A2
scenarios and estimate of ATg by MAGICC model (yellow dots) for the SRES-A2 emission scenarios
and 4 values of the climate sensitivity (K).
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Figure 2.2 Standardised scenarios of changes in temperature (top) and precipitation (bottom) at
Prague according to 11 GCMSs run under SRES-A2 emission scenario. The changes relate to 1K rise in
global mean temperature.



3. CUNI contribution
3.1. Introduction

Charles University’s (CUNI’s) contribution to the provision of climate change scenarios is based on the analysis of the
outputs of the RegCM3 model, developed at the Abdus Salam International Centre for Theoretical Physics and run at
CUNI. A description of the model and its integration domain is provided in the CECILIA deliverable D2.1; basic
validation of the run driven by the ECHAMS5 GCM, as well as simulated changes in mean temperature and precipitation
for the periods 2021-2050 and 2071-2100, are presented in deliverable D2.6.

Along with scenarios based on raw outputs of the RegCM model, series subjected to postprocessing procedure,
correcting for systematic errors in the statistical distribution of the target variables, were also used (these are referred to
as postprocessed series in the following text). The corrective algorithm applied was based on the modified method of
Piani et al. (2009); specific details are given in deliverable D3.2. The validation was carried out for the CECILIA
common domain, covering parts of Austria, Czech Republic, Hungary and Slovakia — see deliverable D3.1 for
specification of the domain and procedures used to generate the respective gridded datasets of observed values. The
outputs of the RegCM model, both original and postprocessed, were IDW-interpolated onto the grid used by the set of
observations in the CECILIA common domain.

The selected illustrative results here are presenting absolute or relative differences between the statistics of
interest in the simulated climate for the period 2021-2050 and for the control period 1961-1990 (former minus/divided
by the latter). For analogical analysis concerning expected changes in the period 2071-2100, see deliverable D3.5.

b3 824 825 826 827 828 829830 831832

|
|
806 801 10811 81681 82p |
lg0700 701 792793 794795 786 797 798 799 800 801 802 808 804 805 |
765 766167 768760 770 771772773 744 775776777778 779780784 782 783 784 185 785 |
738730140741 742743744745 746 7h7 748749 750751 752 753 754 755 756 757 758 750 760 | 76176200 0
706707 708709710711 712713714 7{5 716717718719720721 72% 723724725726 727728 72;4‘ 80731 732 733 } 34 AR P
al A | / Lo 700701 toz 703704705
i 608609610611612613614615616 617618619
600p01602 603 604605 606 607 ‘
/457257357457 8

7877887

250

4 &

589590591 502493504 505506507

49

500

5486 487 488 489 490 1*91492 493494 495 496 497 498 4
6447 448 449 450 451 452 4834!

750

239240241 24;
197198199200201202 2032042+5 206

48—
1000

47+ ]
13 14 15 16 17 18 19 20 21

Figure. 3.1 Grid points of CECILIA common validation domain (identification numbers located over the respective
gridboxes), drawn over the orography of the RegCM model (m)

The results are presented either in a form of maps covering the entire region of Central Europe (raw model outputs
only) or graphs presenting the values of the analysed statistics for individual grid points of the validation domain shown
in Fig. 3.1 (postprocessed data are shown along with their equivalents for unprocessed outputs of the RegCM model, to
demonstrate the eventual contrast between the two). For analogical results derived for the period 2071-2100, see
deliverable D3.5.



3.2. Changes of mean values of temperature and precipitation

The climate change signal is rather weak in Central Europe for precipitation in an annual average (Figure 3.2, left).
Examining different parts of the year separately, the change is revealed to be rather small on average in DJF and JJA
seasons and statistical postprocessing in the applied form does have little effect on its magnitude (Figure 3.3). A slight
but systematic precipitation decrease was found for the MAM season. In the SON season, when the relatively highest
increase was simulated, correction does further amplify it. This feature becomes even more evident for the period 2071-
2100 (see deliverable D3.5).

The annual mean temperature increase of about 1°C was simulated in the CE domain (Figure 3.2, right).
Similar increase was also typical for daily maximum and minimum temperature, annually as well as for individual
seasons; postprocessing slightly amplifies the values derived from the raw model outputs (Figure 3.4). Postprocessing
also brings additional spatial variability into the simulated fields of temperature increase, in contrast to the more
geographically uniform values derived from raw model data.
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Figure 3.2 Absolute changes of precipitation (left, mm/day) and mean temperature (right, °C) in the CE region, for the
period 2021-2050 relative to 1961-1990 (annual mean).
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Figure 3.3 Precipitation change in different seasons, and the influence of postprocessing, for the period 2021-2050

relative to 1961-1990. Blue graph represents change in the original data, red in the postprocessed series; the horizontal
axis shows identification numbers of the gridpoints in the validation domain.
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Figure 3.4 Maximum (top) and minimum (bottom) temperature change in DJF (left) and JJA (right) seasons, and the
influence of postprocessing, for the period 2021-2050 relative to 1961-1990. Blue graph represents change in the

original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid points in the
validation domain.

3.3. Changes in the spread of values

While the signal describing future changes of variance is rather mixed for the temperature characteristics, a tendency
for increase of precipitation variance (or other measures describing the spread of values) was found in most seasons,
though this effect is still rather weak in the period 2021-2050. Postprocessing of the series changes the results very little
with regard to the variance of daily data, as Figure 3.5 shows for the winter season.
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Figure 3.5. Change of standard deviation of daily precipitation sums in the DJF season, and the influence of
postprocessing. Blue graph represents change in the original data, red in the postprocessed series; the horizontal axis
shows identification numbers of the grid points in the validation domain.

3.4. Changes in the extreme tails of the statistical distributions

The changes of the values of the highest or lowest quantiles of daily temperature or precipitation do not precisely
follow the evolution of mean values. In Figures. 3.6,7, 8, this is shown on selected examples, along with the effects of

postprocessing. Note, for example, the strong increase for the 1% quantile of minimum daily temperature in winter
(Figure 3.7), well above the rise of its mean value.
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Figure 3.6. Changes of the value of the 99% quantile of maximum daily temperature, JJA season. Blue graph

represents change in the original data, red in the postprocessed series; the horizontal axis shows identification numbers
of the grid points in the validation domain.
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Figure 3.7 Changes of the value of the 1% quantile of minimum daily temperature, DJF season. Blue graph represents
change in the original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid
points in the validation domain.
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Figure 3.8. Changes of the value of the 99% quantile of daily precipitation, DJF season. Blue graph represents change
in the original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid points
in the validation domain.

3.5. Changes of special derived characteristics

Influence of the simulated climate change on selected characteristics related to the frequency of (non)exceedance of
characteristic values of temperature or precipitation is shown for a few selected examples in this section. There seems
to be a mild tendency towards increase of heavy precipitation events in summer (Figure 3.9). There is an increase of the
number of tropical days (maximum temperature over 30°C), shown in Figure 3.10. Another distinct effect of the
simulated climate change is the drop in the number of winter days when temperature does fall under the freezing point
(Figure 3.11).
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Figure 3.9 Change of the number of days with precipitation over 20 mm in JJA season. Blue graph represents change
in the original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid points
in the validation domain.
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Figure 3.10 Change of the number of days with maximum temperature over 30 °C in JJA season. Blue graph represents
change in the original data, red in the postprocessed series; the horizontal axis shows identification numbers of the grid
points in the validation domain.
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Figure 3.11 Change of the number of days with minimum temperature below 0 °C in DJF season. Blue graph
represents change in the original data, red in the postprocessed series; the horizontal axis shows identification numbers
of the grid points in the validation domain.
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4. NMA contribution

4.1. Methodology overview

The statistical downscaling models (SDMs) used by the NMA in the CECILIA project are based on the canonical
correlation analysis (CCA) technique (Von Storch et al., 1993, Busuioc et al., 1999, 2006). These models have been
developed for the mean temperature (94 stations covering the entire Romania) and precipitation total (16 stations
covering a southeastern area, used for the impact studies in CECILIA). In a previous work (Busuioc et al., 2006) has
been found that, in case of precipitation, it is difficult to find a single skilful SDM for the entire Romanian area, due to
the complex Romanian topography. More skilful SDMs can be found over smaller regions. Therefore, the SDMs
developed by NMA in the CECILIA project refer to a smaller area (Figure 4.1) used for impact studies presented in the
WPS5 and WP6.

Compared to previous studies, when the SDMs have been mainly developed on seasonal scale, taking into
account the necessities of the impact studies, these models have been developed on monthly scale. According to the
CCA techniques presented in previous papers (Busuioc et al., 1999, 2006), the inputs in the SDM (predictors and
predictands) are considered as anomalies projected on the EOF (empirical orthogonal functions) space, retaining the
time series associated to the most important EOFs, which explain the most part of the observed variance, used then as
inputs in the CCA. In the frame of CECILIA project, the monthly anomalies are considered together, stratified on the
four seasons (DJF, MMA, JJA and SON) for precipitation and on cold (November to April) and warm (May to
October) seasons in case of temperature.

The temperature field at 850 mb (T850) has been considered as predictor for temperature while the sea level
pressure (SLP), geopotential heights at 500 mb (H500) and specific humidity at 850 mb (separately or in combination)
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have been tested as predictors for precipitation. It has been found that the SDMs for temperature present a high and
stable skill while for precipitation, even if the skill is significant, the magnitude of the observed anomalies is not always
very well reproduced. More details about the SDM validation are presented in the deliverable D.3.3.

In order to obtained the scenarios for the time slices 2021-2050 and 2070-2099, the skilful SDMs calibrated
over the period 1961-1990 have been applied to the GCM outputs from 8 ENSEMBLES GCMs (stream1 simulations,
http://cera-www.dkrz.de/WDCC) under the A1B emission scenario. The ARPEGE outputs have also been used for the
temperature scenarios until now, but only for the time slice 2070-2099 (see D3.5). The GCMs used as inputs in the
SDMs are: EGMAM (FUB) -3 runs, ECHAMS -3 runs, BCM2 and INGV. The ensemble mean of the SDM projections
based on these GCM outputs have been calculated in order to reduce the uncertainties. The full range of the SDM
projections for all GCM inputs is also presented. The results for the time slice 2021-2050 are presented in the
following.

EEE i
® weather stations

Figure 4.1 The location of the stations used in developing the SDMs for precipitation.

4.2. Change in the mean temperature

Figure 4.2 shows the temperature changes at the 94 Romanian stations represented as ensemble mean of the § SDM
projections, averaged for each season (winter, spring summer and autumn). It can be seen that the highest values are
obtained for summer (between 1.2°C and 1.9°C) with the highest magnitude over the southern-southwestern regions.
For the other seasons, a similar climate signal has been obtained (changes between 0.8°C and 1.5°C) with the highest
magnitude over the northwestern regions. This ensemble averages represents the most likely value from the considered
SDS projections but there are large differences from one projection to another, depending on the driver GCM. In Table
1 the spatial average over Romania for various SDs projections is presented, showing that, over the period 2021-2050,
under the A1B scenario, it expected a temperature change ranging between 0.6°C and 1.9°C (mean 1.0°C) for
winter, between 0.5°C and 1.7°C (mean 1.1°C) for spring, between 1.2°C and 2.1°C (mean 1.6°C) for summer and
between 0.7°C and 1.8°C (mean 1.4°C) for autumn. This result is in agreement with those obtained from the ensemble
mean of 7 ENSEMBLES GCMs, except for winter when the SDS signal is lower (Figure 4.3). An example about the
spatial pattern of temperature change in summer derived from the RCM simulations (ensemble average) is presented in
Figure 4.4. A more reliable comparison has been made between SDMS driven by the ECHAMS-run 3 and three
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ENSEMBLES RCMs driven by the same GCM (details in Figure 4.3). It can be seen that there are differences between
the RCM signals, the SDS signal being included between RCM ranges and it is more similar with the MPI-REMO
signal, except for winter.

It is known that the SDS credibility is dependent also by the performance of the driver GCM in projection of
change in the predictor. It is very difficult to assess the future projections, the only way being the assessment of GCM
performance in simulating the predictor variability under the current climate conditions. In figure 4.5, the difference
between the T850 spatial average derived from the GCM current climate simulations and corresponding observed
(reanalysis) values. The ECHAMS5 GCMs reproduce the best the current T850 conditions as magnitude (figure 4.4) and
spatial patterns (given by the spatial correlations, not shown), The FUB GCMs underestimate the summer values and
the INGV overestimate them.
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Figure 4.2 Change of the seasonal temperature mean (2021-2050 vs. 1961-1990) under the A1B emission scenario at
94 stations in Romania (°C), represented as ensemble mean over SDM projections from the 8 ENSEMBLE GCM
simulations (stream 1).
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Table 4.1 Spatial average (over 94 stations) of the monthly temperature change in Romania
for the 2021-2050 against 1961-1990, under A1B scenarios derived from the SDM projections

driven by various GCMs.
BCM2 EH5-1 EH5-2 EHS-3 FUB1 FUB2 FUB3 INGV
Winter 0.7 0.6 1.0 0.7 1.6 1.0 1.9 0.9
Spring 1.1 0.5 1.3 1.0 1.7 1.2 1.0 0.8
Summer 1.8 1.5 1.7 1.4 1.6 1.2 1.4 2.1
Autumn 1.0 1.5 1.8 1.7 1.4 0.7 1.6 1.3
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Figure 4.3 Change of the seasonal mean temperature (2021-2050 vs. 1961-1990) averaged over Romania derived
directly from various ENSEMBLES RCMs and indirectly through SDM, driven by the ECHAMS-3 (left). On the right,
the ensemble mean of the 8 SDM projections in comparison with the ensemble mean of 7 RCMs.
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Figure 4.4 Change of the summer temperature mean (2021-2050 vs. 1961-1990) under the A1B emission scenario
represented as ensemble mean over 7 ENSEMBLES RCMS.
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Figure 4.5 Differences between the monthly means of T850 (°C) derived from observations (reanalysis) and
ENSEMBLES GCM simulations (stream 1): 1961-1990.

Precipitation change

As it has been presented in the deliverable D3.3, the sea level pressure field covering the area 10-45°E, 30-55°N was
found as the best predictor for precipitation in all the seasons (DJF, MAM, JJA, SON), with the highest skill for winter
and lower for summer. Even if, the SDM does not reproduces always very well the magnitude of the observed
precipitation anomalies, the temporal evolution and the long term mean is quite well reproduced. This result has been
proved by the reconstruction of the monthly precipitation anomalies over the independent data set 1991-2007 with the
model fitted over the period 1991-1990. It was found that the observed change in monthly precipitation over 1991-2007
compared to 1961-1990 is well reproduced by the SDM (more details in the deliverable D3.3).

The optimum model for each season (optimum combination of EOFs/CCAs) has been applied to the SLP
changes for two time slices (2021-2050 and 2070-2099) derived from 8 GCMs (ENSEMBLES, stream1, see section
4.1). The ensemble average has been computed and the results for the first time slice are presented in Table 4.2. The
corresponding results for the 2070-2099 time slice are presented in the deliverable D3.5. The climate signal is similar
from one SDM projection to another, apart from the magnitude, giving some robustness to the results (see Table 4.3). It
can be concluded that, under the A1B scenario, the precipitation is likely to slightly decrease in winter months over
the entire region and over plain area in some other months. Not significant change is generally expected during the
spring, summer and autumn, except for some increase in May.

In order to express better the uncertainty associated to the SDS signal, the spatial average of the seasonal SDS
signal derived from the projection using the ECHAMS-3 driver, has been compared to the corresponding signal derived
from three RCMs driven by the same GCM, including their average (Figure 4.6). It can bee seen that the two signals
are the most similar for summer. This result is in agreement with those obtained in the ENSEMBLE project (van der
Linden and Mitchel, 2009) and presented in the IPCC AR4 (IPCC, 2007), showing that the summer signal is coherent
between various RCM, GCMs over the southern Europe, that gives more robustness to this result. The SDS signal is
also in agreement with the results obtained by the high resolution RegCM (10 km) simulations presented in WP2.

The added value of the SDS technique is its capability to be easily applied to outputs from various GCM
experiments (being computationally inexpensive), that allows to assess the uncertainty of regional climate
change estimations.
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Table 4.2 Change of monthly precipitation (%) at 16 stations from the southeastern Romania derived as ensemble
average over SDM projections from 8 ENSEMBLE GCM: 2021-2050 vs. 1961-1990, A1B scenario.

Station Winter Spring Summer Autumn
XII I II I v \% VI vii vill IX X XI
Campina -16 -17 -18 -17 -6 5 -6 -2 -2 -4 9 -6
Cailarasi -8 -11 -13 -6 -3 6 -12  -11 -8 -4 -8 -6
Fundata -6 -9 -11 -8 -4 6 -2 0 0 -6 -8 -11
Fundulea -11 -15 -15 -13 -6 6 -14 -10 -10 -3 10 -7
Giurgiu -11 -12 -15 -1 1 12 -11 -6 -4 -4 -10 -6
Grivita -10 -14 -13 -15 -7 5 -13  -10 -7 50 12 -8
Int.
Buzaului -4 -7 -11 -7 -5 5 -6 -3 -3 -5 -8 -14
Pitesti -13 -15 -17 -14 -4 8 -9 -5 -7 5 10 -7
Ploiesti -14 -16 -18 -19 -7 6 -9 -5 -4 3 10 -6
Predeal -8 -9 -12 -8 -5 6 -5 -4 -4 -6 -8 -12
Rm. Sarat -15 -14 -14 -12 -4 7 -9 -5 -5 -4 -13 -7
Sinaia -14 -12 -16 -18 -6 5 -2 1 1 -6 -8 -7
Targoviste | -14 -14 -17 -17 -6 6 -10 -7 -9 S5 -1 7
Tr.
Magurele -11 -12 -15 0 2 13 -10 -2 0 -4 -10 -5
Urziceni -11 -14 -13 -24 -10 5 -13  -11 -8 -4 -10 -8
V. Omu -3 -10 -10 3 -4 2 -5 -1 0 -5 -6 -13

Table 4.3 Spatial average (over the 16 stations presented in Table 4.2) of monthly precipitation change (%) derived
from the SDM projections driven by various ENSEMBLE GCMs (stream 1): 2021-2050 vs. 1961-1990, A1B scenario.

Winter Spring Summer Autumn
DriverGCM | XII 1 11 111 v \4 VI vil Vvl | IX X XI
BCM2 | -25 2 -30 -15 0 6 -5 -9 13 0 -9 -17
EHS5-1| 13 -29 -21 19 7 3] -16 2 -11 -5 -10 -30
EH5-2 | -21 -22 -8 21 -5 2 -2 -11 -13 3 -39 -1
EH5-3 | 16 -19 0 -35 -10 17 -8 -4 -6 6 -1 24
FUB-1 | -17 1 -18 -17 2 71 -15 -12 -4 -7 6 0
FUB-2 | -23 -4 -14 -33 -11 21 -4 -6 -8 -20 -7 -15
Fub-3 | -12 -9 -9 -11 -11 -8 -21 -1 -13 -18  -13 -9
INGV | -16 -19 -14 -17 -7 7 3 2 7 6 -1 -17
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Figure 4.6 Spatial average of the seasonal precipitation change (%) over the area 24-27E, 43-45N covering the 16
stations presented in figure 4.1, derived from three ENSEMBLES RCMs and SDS driven by the EHAMS-3 GCM.
The RCM average (mean) is also presented.
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Introduction

The applied stochastic downscaling method has two key elements. The first element includes large-scale circulation of the
atmosphere and the second element represents a linkage between local surface variables and large-scale circulation. The
linkage is expressed by a stochastic model using an observational data series. Then, this model may be utilized with GCM
outputs characterizing atmospheric circulation (Mearns et al., 1999).

Stochastic downscaling methods are based on the fact that there is considerable stochastic relationship between the
large-scale atmospheric circulation and the meteorological, hydrological (hydrometeorological) variables. This relationship
is estimated from observed data and then is used with large-scale circulation available from GCM output. Thus, estimation
can be obtained for local meteorological and hydrometeorological parameters under a new warmer climate. (Bogéardi et al.,
1993). The model was developed and applied for the Carpathian Basin. Computations were carried out using ECHAM
driven RegCM regional climate model outputs (25 km horizontal resolution).

Evaluation of precipitation is a much more complicated task than temperature since it has a spatial-temporal
intermittence (Bartholy et al., 1995). Therefore, it is necessary to analyze both the probability of precipitation occurrence
and its magnitude in wet periods.

Stochastic downscaling methodology in the frame of CECILIA project

First, the stochastic downscaling technique was applied using the ERA-40 datasets for the period 1961-1990. As it is
mentioned above, the method is based on the fact that there is considerable stochastic relationship between the large-scale
atmospheric circulation and the meteorological variables (e.g., temperature and precipitation). This relationship was
estimated from observed data (i.e., ERA-40 datasets) and then is used with large-scale circulation available from
GCM/RCM outputs. Thus, estimation is obtained for local meteorological parameters under new climate conditions.
Large-scale circulation is characterized by macrocirculation (MCP) types of AT-700 hPa geopotential height
data (at 00 UTC) for the region covering the following region with 325 (= 13x25) grid points: 35°-65°N, 30°W-30°E.
The MCP types are defined using cluster analysis on a seasonal basis to the corresponding meteorological variables,
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i.e., temperature or precipitation grid point time series for the region covering Hungary (4x8 = 32 grid points, lat-long:
46°-49°N, 16°-23°E).

Analysis

The statistical downscaling technique was applied for the Carpathian basin using the scenario experiments of RegCM
for 3 time slices: 1961-1990, 2021-2050, 2071-2100. AT-700 hPa geopotential height data (at 00 UTC) from the
ECHAM-driven RegCM experiments with 25 km horizontal resolution served as the predictor variable for the region
covering the previously defined large-scale region. Gridded temperature and precipitation fields for the region covering
Hungary (32 grid points, lat-long: 46°-49°N, 16°-23°E) were generated using the downscaling technique, and compared
to the results of the RegCM experiments using 10 km horizontal resolution (and using the same 25 km horizontal
resolution ECHAM-driven RegCM simulations that provided input fields for the stochastic model). Results of the
2021-2050 period are presented in this deliverable.

List of the analyzed parameters:

1. Coded large-scale circulation 40 types (10 types/season)

2. Seasonal averages of cluster centers (AT-700 hPa)

3. Time series of daily codes (1961-1990, 2021-2050, 2071-2100) — seasonal frequency distribution (Figure 5.1.)

Temperature
1. Seasonal mean change (Figure 5. 2a)

2. Seasonal change of standard deviation (Fig. 5.2b)

Precipitation
1. Seasonal mean (Figure 5.3a.)

2. Seasonal standard deviation
3. Seasonal mean on wet days only (Figure 5.3b.)
4. Seasonal frequency of wet days (Figure 5. 4.)

Summary of the results of the stochastical-dynamical downscaling model for 2021-2050, A1B scenario using RegCM
model simulations for Hungary: only small changes are expected in temperature and precipitation conditions as it is
shown in Figures 5.2-5.4.

1961-1990/ ECHAM )
- 3006 2021-2050/ ECHAM

ODJF 0O DJF
20% = MAM 20% - E MAM

0JIA 0JJA
0‘%) T T T T T T T T T @/07
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 5.1: Seasonal distribution of MCP types using the ECHAM-driven simulation fields for 1961-1990 and 2021-
2050.
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Figure 5.2: Spatial average of seasonal mean simulated temperature change (a) and standard deviation change of
simulated temperature (b) for Hungary, for 2021-2050 relative to 1961-1990.
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Figure 5.3: Spatial average of seasonal mean change of simulated precipitation (a) and of simulated wet-day
precipitation (b) for Hungary, for 2021-2050 relative to 1961-1990.
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Figure 5.4: Spatial average of seasonal mean simulated frequency change of precipitation days (R > 1 mm) for
Hungary, for 2021-2050 relative to 1961-1990.
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