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Introduction 
 
The climate models, although based on a set of equations and parameterizations arising from 
the physical reality of the climate system, often suffer from significant systematic errors. In 
order to use the outputs of GCMs/RCMs for consequent analyses (such as studies dealing 
with the impacts of climate change), additional postprocessing is desirable.  

This report summarizes the effort of various CECILIA teams concentrated on different 
strategies of statistical correction of raw RCM data reducing the biases of model simulations 
and bringing a better match between the PDFs of simulated and observed data. Furthermore, 
approaches allowing statistical localization of the model-produced fields to subgrid 
resolutions were investigated, i.e. methods increasing the horizontal resolution beyond the 10 
km step of regional climate models employed in CECILIA. It is demonstrated that the 
corrections can reduce or eliminate some of the discrepancies the models suffer from, and that 
additional fine details can be introduced to the RCM-simulated fields of climate variables. 
The material presented is divided into chapters containing description of activities done by 
individual partners involved in the deliverable:  

BOKU (page 5), focusing on a quantile-matching corrective procedure for daily 
temperature, precipitation and relative humidity, simulated in the Central European region, 

CUNI (page 16), testing a low-parametric alternative to the postprocessing procedure 
employed at BOKU and applying an elevation-based technique of localization of daily 
temperature and precipitation, simulated in the Central European region, 

NIMH (page 28), using transformation based on the topography characteristics 
(elevation and gradients) before bilinear interpolation in order to minimize the interpolation error, 
for monthly temperature and precipitation in the Bulgarian region. 
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Correction of RegCM3 model output data using a rank 
matching approach applied on various meteorological 

parameters (BOKU) 
 

 
Summary 
 
A method for a post-processing model bias correction is investigated using daily data 
obtained from the regional climate model RegCM3 driven by reanalysis data. The evaluation 
of the performance is done by comparing the original model data and the corrected model data 
with observational data.  
The regional climate model data from RegCM3 used here is a high-resolution climate 
simulation run with grid spacing of 10 km for the time period 1961-2000 covering the central 
and eastern part of Europe.  
 
The correction method is based on using the differences of the empirical cumulative density 
functions of model and observation and it is applied to the model data such that the statistics 
of the observations are retained. The method uses correction factors that correct the model 
data depending on the CDF values. The correction factors are defined either as an additive 
correction, which was used e.g. for the temperature data or as a multiplicative correction 
which was used e.g. for precipitation. The correction factors are calculated on a monthly 
basis. 
A split sample test was applied to evaluate the method. The data of the period 1961-1985 was 
used to calculate the correction factors and these were used then to correct the data of 1986-
2000. This corrected data was then verified against the observations of this period. 
The method is simple to implement and it shows very good improvement of the model data 
for the main statistical parameters for temperature (maximum, minimum, mean), relative 
humidity and precipitation although the mean absolute error is reduced only very little, 
because the temporal correlation is not improved. Statistical indices related to the CDF like 
mean and variance are improved. The correction method for temperatures and relative 
humidity performs very well and can be used for model output correction without any 
limitation. For precipitation a number of problems occur due to the distribution of 
precipitation improving not all aspects of precipitation statistics.   
 
 
Methodology 
 
The statistical properties of a dataset are entirely described by the probability density function 
(PDF) or by the cumulative density function (CDF). 
This means that if two data sets have the same PDF (CDF) then they are statistically identical 
i.e. they have the same mean the same variance and all the other moments are also identical.  
 
If we want to correct a dataset such that the statistical properties are recovered this could be 
done by correcting the data in such a way that the CDFs become identical. Therefore we 
construct the correction of the data using the CDFs. In fact we are not using the CDFs directly 
but the quantile function, which is the inverse of the CDF.  
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Here we investigate a method that uses the CDF of an observation dataset und the CDF of a 
model to find correction factors that modify the model output data in such a way that the 
CDFs of the observations and the corrected data become identically. Once the correction 
factors are found it is possible to correct all data of the model assuming that the model bias 
statistics don't change. 
 
If we have data from a model and observational data then the observational data can be used 
to correct the model data. This can be done in various ways. One possibility is to use the CDF 
of both datasets and to adjust them. 
 
 

 
Figure 1: Illustration of the rank matching method. Shown are a CDF of observations and a CDF of model 

output and the illustration of correcting at the probability value y 

 
To explain the correction method now in detail we look at Figure 1, which shows the two 
CDFs. The x-axis values can be seen as p-quantiles and the y values are probabilities. The 
notation obs and mod denote the CDF of the observation and the CDF of the model, 
respectively. Since the model CDF does not match the obs CDF very well the model data has 
some kind of bias or error that we want to correct. The general goal now is to correct the 
original model data set in such a way that the CDF of the corrected model data becomes 
identical with the CDF of the observations. The small arrows in the Figure between the two 
CDFs indicate how the CDF values have to be shifted to achieve this goal. All we do 
therefore is to apply a correction to the model data depending on the CDF values. 
 
For example we want to define a correction for the probability p. The dotted horizontal line 
shows the two according p-quantiles. The observation p-quantile is xo and the model p-
quantile is denoted as xm. We see that the model p-quantile is larger than the observation p-
quantile. We now define two different correction factors to correct the original model data 
having the CDF value p. The first correction is an additive correction defined as:  
 
 

momoa xxyFyFyf −=−= −− )()()( 11  
 
 
The second correction is a multiplicative correction factor written as:  
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If we now correct a value of the original model data set that has the CDF value p we see that 
the corrected value xc: is the observation value: 
 

omomamc xxxxfxx =−+=+=  
 
and analog for the multiplication factor. So we have corrected the model output value xm to 
the observation value xo both having the CDF value p. This is now done for all p values und 
the corrected model data set has then the same CDF like the observations.   
 
A simple example shown in Figure 2 demonstrates the method showing the PDF and the 
CDFs of observation and model. This example was used to test the method on synthetic data 
showing the ability to reconstruct the PDF and the CDF using the here defined correction 
factors on the data. We see very clearly that the distributions of the observations and of the 
corrected data are very similar which is the central goal of this method. 
 
Since this method can be used on any model and observational data set, it has to be decided 
critically, if it makes sense to correct the data in such a way since the method might change 
the original model dataset. It is rather necessary that the model data and the observation data 
are somehow similar and the corrections applied are relatively small. Therefore a close look at 
the correction factors gives insight on the changes applied.  
 
 

 
Figure 2: The left panel shows the PDFs of the synthetic data. The solid line is the PDF of the synthetic 
observational data. The corrected model data are shown in light grey. The synthetic model data is the dashed line 
which shows a shift to lower values and a gamma skewed distribution. The right side shows the corresponding 
CDF.  

 
 
We use an empirical CDF as basis for the correction. Empirical CDFs can always be 
estimated by simply calculating the percentiles for a number of values, which makes this 
method also very useful since there is no assumption needed concerning an underlying 
probability function.  
 
In Figure 3 the spatial distribution of the mean correction factors for precipitation (left side) 
and temperature maximum (right side) for values higher than the median are shown. The 
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spatial pattern of the correction factors vary between the months and parameter, but often the 
structure is related to the topography. For precipitation (left side) the multiplicative factors 
lower than 1 indicate an overestimation of the precipitation in the model and for temperature 
maximum the positive values indicate an underestimation of the model.  
 

 
Figure 3: The spatial distribution of mean correction factors for values between p=0.5 and p=1 for RR (left) and 
Tmax (right) 

Figure 4 shows the temporal correlation of the monthly sums of precipitation (left side) and 
the improvement achieved with the bias correction. This type of bias correction has no 
significant effect on the temporal correlation. In most regions there is no change or light 
improvements, but in several regions even a decrease in temporal correlation can be seen.  
 
 
 

 
Figure 4:  The left panel shows the time correlation in terms of  R2 of monthly precipitation comparing the 
model precipitation with the observations. The right panel shows the improvement of this time correlation using 
the correction method. 
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Evaluation and discussion 
 
The empirical bias correction method is tested on model data and observational data. The 
regional climate model is forced with ERA40 reanalyses data, which allows a direct 
comparison of model result with observations. The calibration period where the correction 
factors are calculated is 1961-1985 and the evaluation period where the model data is 
corrected with the calculated correction factors is 1986-2000. The investigated parameters are 
maximum and minimum temperature, relative humidity, radiation and precipitation although 
we will present here only results for maximum temperature and precipitation. These two 
parameters are chosen to demonstrate the additive (maximum temperature) and the 
multiplicative (precipitation) correction as already discussed earlier. 
 
The correction method is evaluated comparing the original model data and the corrected 
model data with the observations for the time period 1986-2000. These 15 years are not very 
long but we decided to use a longer time period (25 years) for calibration to receive more 
accurate correction functions.  
The calibration is performed by dividing the range of the inverse CDF function into 100 
sections and by calculating the midpoint values of the observations and of the model. The 
midpoint was chosen to use somewhat like an average value that is valid for the interval. For 
example the correction factor for the values between the 99th and the 100th quantile of the 
data are corrected with the value of 99.5 quantile. 
 
RegCM3 produces a large number of days with very small amounts of precipitation, which 
are usually set to zero. To demonstrate the ability of the correction method this was not done. 
Rather the original model output data was used. 
 
In order to show some detailed results two single grid points are chosen: one in the Northwest 
in a rather orographic complex terrain and one in the Southeast in a very low and flat part of 
the domain. These two points will be denoted with NW and SE respectively. 
 
The first step of the correction process is to calculate the correction factors using data from 
the calibration period 1961-1985. The results for maximum temperature on a monthly basis 
are shown in Figure 5 and the correction factors of precipitation are shown in Figure 5. The 
solid line shows the correction factors for grid point NW and the dashed line for grid point 
SE. The grey lines are the correction factors for all other points. The panels are arranged such 
that line one to four show DJF, MAM, JJA and SON respectively. 
 
We see that the correction factors of Tmax for our two selected grid points reduce the values 
of the model output in December and January for almost all p values except of values close to 
the maximum. From March on the character of the correction changes. The values of the 
original model data are then too low and have to be corrected up to 4 °K e.g. if we look at 
month 5 we see that for almost all p values the correction is more than 2 °K for grid point SE 
while grid point NW has up to a p value of 0.5 almost no correction and then increasing 
values up to 3.5 °K. This demonstrates the different characteristics of different grid points, 
which have to be taken into account for a proper correction. 
 
The correction factors of precipitation show that p values up to about 0.3 are zero which 
means that the precipitation is set to 0 i.e. the correction method produces dry days. The 
maximum p value being 0 is the fraction of dry days as obtained from the calibration i.e. the 
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fraction of dry days in the observations. Since the model always has less dry days than the 
observations a large part of the CDF range is reduced.  
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Figure 5: The monthly correction factors for maximum temperature. 
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Figure 6: The monthly correction factors for precipitation 

 
The performance of the correction method is evaluated especially concerning two aspects: the 
ability of reproducing the CDF and the ability of reproducing various statistical parameters 
representing the day to day performance of the correction method and of the model data.  
The CDF validation gives information of the performance of the method and its ability to 
fulfill the general aim of the method. To test this CDF reproduction different periods are used 
for validation und evaluation. It has to be proven that the correction factors obtained from one 
period might correct the data of a different period in a similar way in a statistical sense.  
If this first task is passed it has to be tested what the effects of the correction are on the data in 
general. Since the data are corrected they are also changed. They are changed to fit the CDF 
of the observations, but how these changes affect the data statistics in general has to be 
investigated as well. This second aspect of evaluation concerns the general statistical 
performance of the method with a closer view on statistical parameters and quantities 
characterizing of precipitation and maximum temperature. 
 
General statistical performance 
 
To compare the skills of the bias correction, a whole set of standard statistic parameters are 
calculated. In Figure 7 several indices for precipitation and temperature maximum is shown. 
Always the fraction model versus observation is calculated.  The indices are calculated for 
every single grid point and than averaged over the whole area. For precipitation (left side) a 
clear improvement for all quintile depending indices like mean, intensity etc, can be seen. All 



 12

indices are close to 1 which indicates a good fit with observations. Only for the very extreme 
values like the 3 maximum daily precipitation sums no improvement can be seen.  
 
For temperature maximum (right side) for all indices an improvement can be seen. For the 
average values and not percentiles up to 80 the bias nearly vanishes. At the 95 percentile the 
bias is improved but still reaches more than 1.5 K and only a small effect is seen at the mean 
absolute error. This can be explained by no improvement of the temporal correlation.  
 
 

            
 

Figure 7: Comparison of the corrected model and the model performance. The left panel shows results for 
precipitation and the right panel for maximum temperature.  Shown are a number of statistical indices 
characterizing precipitation. The values are fractions of the observational value. The indices for left side: m= 
mean, int=intensity, fre=frequency, iqr=interquartile range, 95pct=95 percentile, n10=number of days with more 
than 10 mm precipitation, max3= average of the 3 highest daily precipitation sums, 3gp=average of the 3 
maximum gridpoints. The indices for right side: mea=arithmetic mean, med=median, mae=mean absolute error, 
std=standard deviation of the bias, iqr=interquartile range, 95pct (90,80,70) = 95 (90,80,70) percentile 

 

For precipitation the situation is more complex and more difficult. This is due to the CDF of 
precipitation and due to the binary character of precipitation which separates days with 
precipitation and days without precipitation. On the one hand we have a continuous variable 
with a range starting from zero but on the other hand all variables with zero precipitation are 
distinctly different in character to all other days. We assume further that all models produce 
too many days with too little precipitation which is the case in general. The correction method 
now changes a number of days with little precipitation to zero. This is already a question 
worth change since the character of each of these days is substantially changed. But since 
these days are days with very little precipitation this can be tolerated. But since the number of 
days where this changes has to be done is a very big portion of all days these changes have to 
be somehow compensated by all the following values which leads to major changes in all 
statistics concerning only precipitation days.  
 
The effect of the bias correction on the frequency to consecutive wet and dry day is shown in 
Figure 8. In the direct model output the frequency dry periods is highly underestimated. Even 
short dry periods are underestimated and it is getting worse the longer the dry periods are. 
This is clearly improved by the bias correction, but even then a slight overestimation of short 
dry periods and underestimation of long periods is given. For wet periods (right site) the 
original model overestimate long wet periods with more than 6 consecutive wet days. This 
bias vanishes after bias correction nearly totally.  
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Figure 8: Series of consecutive dry and wet days. (left dry series, right wet series)  

 
In Figure 9 and Figure 10 the frequency distribution of the biases before (left side) and after 
bias correction (right side) is shown. For temperature maximum biases of the model are nearly 
normal distributed but shifted to the left, which indicates a cold bias. After bias correction the 
biases are symmetric around zero and nearly 50 % of the biases are within ± 1 K and more 
than 80 % within ± 2 K.  
 

 
Figure 9: Histogram of the mean anomalies of the model maximum temperature (left) and the corrected model 

maximum temperature (right) 

 
  
A similar improvement can be seen for precipitation. Here the model precipitation biases are 
shifted to the right side, which indicates an overestimation of precipitation. After bias 
correction more the 45 % of the biases are within ± 0.5 mm per day 
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Figure 10: Histogram of the mean anomalies (mm per day) of the model precipitation (left) and the corrected 

model precipitation (right) 

The spatial distribution of the maximum temperature bias for summer (JJA) of the model 
(left) and the corrected data (right) is shown in Figure 11. Large areas show a cold bias and 
the average bias is 2 K. After applying the bias correction the average bias in 0.4 K and for 
most parts of the area the biases are within ±  1 K. 
 
 
 

   
Figure 11: Spatial distribution of mean absolute errors of the monthly means for the model (left) and the 

corrected model (right) for maximum temperature.  

 
The spatial distribution of the precipitation bias for summer (JJA) of the model (left) and the 
corrected data (right) is shown in Figure 12. Within the whole area the precipitation is 
overestimated by 50 %. After bias correction the area average bias is reduced to 3 %. But it 
can be seen that on grid point levels still relative biases of ± 25 % occur.  
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Figure 12: Spatial distribution of mean relative errors of the monthly means for the model (left) and the 

corrected model (right) for precipitation. 

 
Application of the bias correction method 
 
For application of this method to the climate change scenarios the regional climate control run 
1961 till 2000 forced with GCM has been calibrated with observations and has been applied 
to the two scenario periods. Bias corrected data are available for the CECILIA Central Europe 
region on daily time step for 
 
Temperature minimum 
Temperature maximum 
Relative humidity 
Precipitation 
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Statistical postprocessing of RegCM3 and ALADIN 
regional climate models (CUNI) 

 
Summary 
 
At CUNI, a low-parametric alternative to the bias-corrective procedure applied at BOKU was 
investigated and used to modify data representing daily maximum and minimum temperature 
and daily precipitation. Its application is presented in the ‘Bias correction’ section for the 
outputs of the RegCM3 (run at CUNI) and ALADIN-Climate/CZ models (run at CHMI), 
driven either by the ERA-40 reanalysis or by ECHAM5 (RegCM3) and ARPEGE (ALADIN) 
global models - see deliverable D2.1 for details on the regional models. In the ‘Localization’ 
section, possibility of further localization of the RCM outputs is discussed and demonstrated 
for the RegCM model. Finally, bias-corrective and localization procedures have been 
combined, to provide very high resolution series with reduced systematic errors – a sample of 
the results is shown in the ‘Combined postprocessing’ section, and the concluding remarks are 
given in the ‘Discussion and conclusions’ section. 
 
Bias correction 
 
There are several strategies applicable for correcting the GCM/RCM outputs, from simple 
application of additive/multiplicative factors to more complex techniques based on deriving 
individual transformations for different sections of the data (e.g., for different quantiles). An 
overview of some of the approaches is presented by Deque (2007). Here, we apply a modified 
version of the method introduced by Piani et al. (2009). 
 First, both observed and simulated PDF of the variable of interest (daily maximum 
/minimum temperature or precipitation) were approximated by a low-parametric fit, 
individually for each grid point. Several distributions have been tested with regard to their 
ability to reproduce the shape of the temperature/precipitation distribution (normal, skew 
normal, log-normal, exponential, generalized exponential, GEV, gamma and generalized 
gamma). Two 3-parametric statistical distributions have then been chosen for postprocessing: 
 
• Skewed Gaussian distribution was used to approximate the distribution of maximum or 

minimum temperature t 
 

( ) 2 t tf t μ μφ α
σ σ σ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞= Φ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
,        (1) 

 
where μ represents a parameter of location, σ parameter of scale and α controls asymmetry of 
the distribution; φ and Φ represent density and distribution function of the N(0,1) normal 
distribution. 
  
• Generalized gamma distribution was applied to approximate the distribution of 

precipitation amounts p in non-dry days: 
 

( ) ( )

1

exp
kp pf p

k

β ββ
θ θ θ

− ⎛ ⎞⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠⎝ ⎠
, 0x >       (2) 
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where β and k are the shape parameters and θ  is the scale parameter; Γ represents the gamma 
function. The fitting of the distributions (i.e., estimation of the parameters α, μ, σ and β, k,θ , 
respectively) was done by a gradient descent search for the maximum of the likelihood 
function. The relative number of days without precipitation (i.e., p = 0) was set to a constant 
value P, derived from the fraction of dry days in the calibration period of the 
simulated/observed data.  

After obtaining the fits f, the respective CDFs were constructed through numerical 
integration of the PDFs (for precipitation, taking also the occurrence of dry days into 
account). The respective quantiles were computed with a step of 0.1%. By matching the 
quantiles representing the same position in the sorted datasets of RCM-simulated and 
observed values, corrective terms were defined as a function of the RCM-simulated t or p. 
The correction was created to be additive for temperature series (i.e., its value was calculated 
as a difference of the matching quantiles), and as the multiplicative one for precipitation. The 
precipitation values exceeding the 99.8% quantile were left in their original form; 
temperatures below the 0.2% quantile (over the 99.8% quantile) were modified by the 
correction obtained for the 0.2% (99.8%) quantile - this modification was used to reduce the 
effect of sometimes poor representation of the extreme tails of the target variables by the low-
parametric fits.  
 Calibration of the corrective mappings was carried out for the period of years 1961-
1985, validation for the period 1991-2000. The corrections were created separately for 
individual seasons (precipitation) or months (temperature). Identical spatial validation domain 
was used by both BOKU and CUNI teams (for more information on this domain and 
calibration/validation dataset generated from observations, see the report on deliverable 
D3.1). 
 
 The effect of the presented postprocessing procedure on the bias of the maximum 
temperature series produced by the RegCM and ALADIN models is illustrated in Figs. 12 and 
13. The temperature fields are brought very close to the observed patterns by the correction 
and their cold bias almost disappears at most locations in the annual mean (Fig. 12). In some 
seasons, there is a residual bias even after the correction, but match to the observed data is 
substantially improved nonetheless. The bias is also generally comparable to or smaller than 
bias of the outputs of the statistical downscaling techniques (Fig. 13), described and studied in 
the deliverable D3.3. The results were similar for minimum temperature (not shown). 

Systematic errors are even more of a problem for the RCM-simulated precipitation 
than they are for temperature. Fig. 14 illustrates this for the mean annual precipitation: While 
the RegCM model suffers from a very strong wet bias, ALADIN reproduces precipitation 
fairly well in a spatial average, but distinctly overestimates spatial variability. Application of 
postprocessing can remove both of these problems, even for individual seasons (Fig. 15). 
Again, the bias of the corrected data is no worse than for the series produced by statistical 
downscaling techniques. A substantial improvement can be observed not just in terms of 
mean values and spread of values, but also in a more realistic shape of the PDF in general 
(Fig. 16). Note especially how the severe underestimation of the number of dry days is 
amended, while the number of days with heavy precipitation is reproduced rather realistically. 
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Figure 13: Annual mean of maximum daily temperature (°C): Observed (top), raw output of the RCMs 

(middle) and outputs of the RCMs after correction (bottom). Results for the RegCM model are shown on the 
left, for ALADIN on the right. The RCM runs were ERA-40-driven. 
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Figure 14: Bias of maximum daily temperature, for raw outputs of the regional models (RegCM. ALADIN), 

selected methods of statistical downscaling (MLR, Local models, Analogues, RBF NN, MLP NN – see 
deliverable D3.3 for details) and postprocessed outputs of the regional models. Seasons are denoted I (DJF), II 

(MAM), III (JJA) and IV (SON). The RCM runs as well as the statistical downscaling mappings were driven by 
ERA-40. 
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Figure 15: Annual mean of precipitation (mm/day): Observed (top), raw output of the RCMs (middle) and 

outputs of the RCMs after correction (bottom). Results for the RegCM model are shown on the left, for 
ALADIN on the right. The RCM runs were ERA-40 driven. 
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Figure 16: Bias of precipitation, for raw outputs of the regional models (RegCM, ALADIN), selected methods 

of statistical downscaling (MLR, Local models, Analogues, RBF NN, MLP NN – see deliverable D3.3 for 
details) and postprocessed outputs of the regional models. Seasons are denoted I (DJF), II (MAM), III (JJA) and 

IV (SON). The RCM runs as well as the statistical downscaling mappings were driven by ERA-40. 
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Figure 17: Distribution of values of daily precipitation in the series obtained by different downscaling methods, 
dynamical or statistical (situation for a grid point located at 49°00’ N, 15°28’ E) – JJA season. The RCM runs as 

well as the statistical downscaling mappings were driven by ERA-40. 

 

By re-shaping the distribution of the target variables, representation of individual quantiles 
generally becomes significantly better. In Fig. 18 this is illustrated for the 60% quantile of 
precipitation (which is relatively close to zero in the observed data, but unrealistically high in 
the raw output of the RegCM model) and the 99 % quantile of precipitation (which is 
simulated with a minor tendency for underestimation; postprocessing introduces a mild 
change to correct this at most grid points). 
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Figure 18: 60% (top) and 99% (bottom) quantile of daily precipitation in the JJA season, in observed data, raw 

RegCM (ECHAM5-driven) model outputs  and corrected model outputs. The horizontal axis shows the 
identification number of the grid point in the validation domain. 
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 Improved representation was also typical for the extreme tails of the temperature 
distributions. While the very highest and very lowest quantiles were often simulated with 
higher systematic error than means/medians, the applied correction was generally able to 
bring them back close to the observed values (Fig. 19), though its performance was 
sometimes worse for the ERA-40-driven RCMs. An improvement was also generally 
achieved for the measures of asymmetry of the PDF (Fig. 20). 
 
 An important feature of the applied corrections is the character of their eventual 
influence to the simulated changes of the climate variables. Even thought the form of the 
correction is identical whatever period of the data it is applied to, the resulting climate change 
signal may be amplified or reduced due to the fact that the corrective factors vary as a 
function of the values being corrected. Examples of such behavior are given in deliverables 
D3.4 (climate change scenarios for the period 2021-2050) and D3.5 (period 2071-2100). 
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Figure 19: 99% quantile of maximum daily temperature in the JJA season (top) and 1% quantile of minimum 

daily temperature in the DJF season (bottom), in observed data, RegCM (ECHAM5-driven) raw model outputs 
and corrected model outputs. The horizontal axis shows the identification number of the grid point in the 

validation domain. 
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Figure 20: Skewness of maximum daily temperature in the JJA season, in observed data, RegCM (ECHAM5-
driven) raw model outputs and corrected model outputs. The horizontal axis shows the identification number of 

the grid point in the validation domain. 
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Localization 
 
The simulations run within the frame of the CECILIA project (using models RegCM and 
ALADIN-Climate, described in CECILIA deliverable D2.1) were carried out with the 
horizontal step of approximately 10 km. But even with the model grid this dense, the 
complexity of the surface and its influence to the atmospheric processes can be captured just 
partially. The seriousness of this problem varies with the geographic region - the 
predominantly flat areas are described rather realistically, a complicated terrain is 
unavoidably oversimplified. The Czech Republic is among the regions where the real terrain 
is still too complex to be accurately represented by a model, and the difference between real 
orography and orography in the 10 km grid is profound at some locations (Fig. 21). The same 
can also be said for most of the CECILIA Central-European validation domain. 
  

 
Figure 21: Difference (m) of the model orography used by the 10km RegCM run (CUNI) and real terrain height, 

described by the USGC 30'' digital elevation map (obtained from http://www.usgs.gov/). 
 
While the terrain (mis)representation is just one of the issues associated with a finite 
resolution of regional climate simulations, its effect is critical for many key climatic variables. 
In their approach to the RCM outputs localization, the CUNI team has focused on finding 
general mappings, able to compensate for the identifiable effects of altitude mismatch, and on 
possibilities of their combination with the bias-corrective procedures.  

Because the resolution of the RCM simulations in CECILIA already exceeds the 
density of data directly available from the network of weather stations (every model grid point 
represents area of approximately 100 km2), no attempt was made to create individual location-
specific transfer functions for each target site (such techniques of statistical downscaling 
were, however, developed for CECILIA deliverable D3.3). Instead, the applied approach to 
localization was aimed at finding a modification/correction of the model outputs, which: 
- is applicable for any arbitrary location, not restricted just to sites with a pre-existing 
record of measurements of the target variable, 
- can be used for both present and future climate and will not require any strong 
assumptions about the stationarity of the derived relations. 

Several approaches to localization of RCM data have been tested and compared for the 
outputs of the RegCM model. The altitudinal dependence of temperature or precipitation was 
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employed as a primary base for the transformation of the model outputs to arbitrary points 
inside the model domain (including locations not identical with any of the nodes of the model 
grid), compensating for the oversimplified orography of the model. In addition to the basic 
altitude-based conversion, the results of localization were further combined with bias 
correction introduced in the previous section. The presented results were derived for the area 
of the Czech Republic, using the ERA-40-driven integration of the RegCM model (period 
1961-1990); some of the tests were also carried out for CECILIA validation domain. 

  
First, several types of localization based on global (i.e., related to the entire target 

region, approximately of the size shown in Fig. 21 or 25) or local (i.e., computed on a limited 
neighborhood of the target location) vertical gradient were tested. Various variants of the 
correction have been examined, involving localization of monthly mean or individual daily 
values, with monthly or daily values of vertical gradient employed for the correction of the 
altitude discrepancy.  

A simple form of corrective mapping was used to derive the localized values: 
 
 ( )localized O Mx x b h h= + − ,        (3) 
 
where x denotes the model-produced value of the variable being localized, b is the 
global/local vertical gradient of x for the respective month/day and Oh and Mh represent 
altitudes of real (USGS) and model terrain, respectively. For points located between the nodes 
of the RegCM grid, Mh  and x have been interpolated by the inverse distance weighting 
(IDW). The value of gradient b was computed globally or locally, using the gridpoints from 
the 100 km radius around the target location.  

The model-simulated gradient b proved to be a good approximation of the vertical 
gradient observed in the real atmosphere for daily mean temperature (Fig. 22, left panel); for 
maximum and minimum temperature, the difference was somewhat stronger. The model-
produced vertical gradient of precipitation exhibited significant differences from reality, 
though the mean annual value was captured fairly well (Fig. 22, right panel).  

For gradients computed on daily basis, the deviations from reality were more distinct 
(especially for synoptic situations characterized by temperature inversion). Even so, in a 
temporal average, the results were similar to those obtained by localization on mean monthly 
basis. 
 

1 2 3 4 5 6 7 8 9 10 11 12
MONTH

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

G
R

A
D

IE
N

T 
(°

C
/1

00
0m

)

 OBSERVED
 RegCM-1961-1990
 RegCM-2021-2050
 RegCM-2071-2100

1 2 3 4 5 6 7 8 9 10 11 12
MONTH

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

G
R

A
D

IE
N

T 
(m

m
/d

ay
/1

00
0m

)

 OBSERVED
 RegCM-1961-1990
 RegCM-2021-2050
 RegCM-2071-2100

 
Figure 22: Mean vertical gradient of mean temperature (left) and precipitation (right) in the observed data and 

in the outputs of the RegCM model for different periods. Target area: Czech Republic 



 24

 
The linear correlation between monthly mean values of all three types of temperature and 
terrain elevations was very strong in the model data (see Fig. 23d for mean January 
temperature). Also, while there were certain spatial variations of the local value of the 
temperature gradient (Fig. 23c), the range of values was rather small over the Czech Republic. 
Because of this, the resulting temperature patterns followed terrain elevation very closely 
(Fig. 23b), and they conform to the patterns of observed temperature (e.g., Tolasz et al., 2007) 
quite well. For precipitation, the relation between monthly mean values and altitude was 
strong in the cold part of the year (Fig. 24), but much weaker during summer. As a result, the 
altitude-based correction did not dominate the field of localized precipitation in summer, and 
the spatial distribution of interpolated values was basically a product of the IDW interpolation 
alone.  
 The outcomes of the altitude-based localization were validated for a data set obtained 
at 25 Czech weather stations. Performance of the procedures based on daily data and on mean 
monthly data was similar; both offered improvement for temperature series at most stations in 
terms of RMSE or bias, but failed to better the series of precipitation. 
 
 

 
 

Figure 23: Monthly mean temperature in January, simulated by the RegCM model (a) and after the altitude-
based localization of the model outputs (b). The respective local values of the vertical gradient b of model 

temperature are shown as (c), correlation (x1000) between temperature and altitude in the local neighborhood of 
the target location (100 km radius) as (d). 
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Figure 24: As Fig. 23, for monthly mean precipitation in January. 
 
 
Combined postprocessing 
 
To obtain fields of temperature and precipitation that are both devoid of major systematic 
errors and detailed enough to be used for studies at very fine scales, postprocessing and 
localization may be combined. Fig. 25 shows results of such a procedure applied to the 
outputs of the RegCM model, forced with ECHAM5, for annual mean of maximum daily 
temperature in the periods 1961-1990 (control climate), 2021-2050 (simulation for near 
future) and 2071-2100 (far future). The target area in this case was identical to the one 
employed for the postprocessing procedures in the chapter ‘Bias correction’.  

While generally successful, the procedure does not produce data which could be 
considered completely flawless. In particular, note several artifacts, visible especially in the 
temperature field simulated for the periods 2021-2050 and 2071-2100 in Fig. 25. Their 
occurrence is caused mostly by the insufficient local density of the observations, used for 
creation of the gridded validation/calibration data. In the future development of the 
postprocessing techniques, the severity of this problem may be reduced by using generalized, 
area-wise bias corrections instead of transforming the series for each grid point individually. 
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Figure 25: Annual mean maximum temperature (°C): Data simulated by the RegCM model after the bias 
correction (top left), localized data for the control period 1961-1990 (top right) and the future periods 2021-

2050 (bottom left) and 2071-2100 (bottom right) 
 
 

 
Discussion and conclusions 
 
While the quantile correction used at BOKU represents a more flexible mapping with more 
degrees of freedom (i.e., free parameters through which the mapping can be fitted), 
application of a function of such complexity may result in overfitting of the corrective 
function, which may then become unreliable for tasks involving extrapolation for conditions 
substantially different from the calibration ones (especially in case of more distant future time 
periods, when a significant shift of PDF is expected for some of the climate variables).  
Regardless of the details of the corrective procedures, both BOKU and CUNI approach seem 
to substantially improve the quality of the RCM outputs. But it should also be emphasized 
that there are problems still not addressed by the correction in the applied form(s): For 
instance, it does not specifically target and repair eventual unrealistic temporal structure of the 
series, characterized, for instance, by the shape of the autocorrelation function. Nor does it 
explicitly repair the discrepancies in the structure of spatial correlations, though the 
modifications applied at individual grid points may bring changes to the relations between the 
respective series. 

The corrective algorithms, both the one applied at BOKU and at CUNI, focus on 
univariate conversions, performed separately for singular variables. This may lead to 
weakened physical consistency of the model outputs, and/or retaining the discrepancies 
contained in the raw model outputs. Future efforts in this field should therefore attempt to 
create multivariate corrective approaches, which will create datasets that respect the natural 
relations between different variables (and, at the same time, remove the respective 
inconsistencies in the raw outputs of the RCMs themselves). 
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The localization algorithm applied at CUNI proved to be rather successful for 
monthly/seasonal temperature means. This is due to the strong (and relatively linear) link 
between temperature and terrain elevation, which is reproduced quite well by the RCMs. For 
daily data, the simple linear correction seems inadequate in some synoptic situations, but 
substantial improvement was found on average. For precipitation, the localization in the 
presented form is less successful (especially in summer and for daily data), and more complex 
methods will probably be needed in the future (e.g., taking local circulation into account, as 
well as shape of local terrain instead of just elevation). 
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Localization of the monthly mean temperature and daily 
precipitation using ALADIN simulations over Bulgarian 

domain (NIMH) 
 
 
Localization method 
 
By reducing the resolution of RCMs, some improvements may be expected due to more 
realistic impact of land surface fields and topography, reduced approximation error and 
improved dynamics. Despite this, discrepancies between real and model topography, real and 
model terrain, land-sea mask, etc. still remain. 
These inconsistencies are minimized by applying special transformation of the interpolated 
field to reduce the interpolation error. 
 
Suppose an interpolation of any field F by a given operator A from one grid (blue) to a 
staggered one (red). Let us mention this operation by A+ and by A- the backward one. 
Applying both of them we will obtain another value of the field for the same grid point: 
 
  A- (A+ F) 
 
 The difference between the initial and resulted values we call ‘interpolation error’ Ierr: 
 
  Ierr=F - A- (A+ F) 
 
 

 
 
 
Now we define the problem: 
For a given interpolation operator A find transformation B of F so that: 
 
   B F - A- (A+ B F) = min 
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The localization consists of the following steps: 
1. Transformation of the field F by B. 
2. Applying of interpolation to the observation point using A. 
3. Applying reverse operator of B. 
 
We use bilinear operator A. B was defined as linear combination of the elevation h, h3 and 
derivatives of h: dxh, dyh (this terms where obtained by preliminary analysis using stepwise 
regression): 
 
B F = F + αh + βh3  + γdxh + δ dyh 
 
It could be proved, that the maximum error of the interpolation over the whole area is 
achieved when the grids are staggered equidistantly. The operator A- (A+ BF) is: 
 
A- (A+ B F) =(Bfi-1,j-1+Bfi+1,j-1+Bfi-1,j+1+Bfi+1,j+1+2*( Bfi-1,j+Bfi+1,j+Bfi,j-1 +Bfi,j+1) + 4*Bfi,j)/16. 
 
 
To avoid dependence of latitude and longitude the area was separated on several sub areas. 
 
On the next figures the effect of this method is illustrated. For this we used daily runs for June 
2007. The color scale for precipitation is in mm/day and Celsius degrees for temperature. 
 
 
 
 

MONTHLY PRECIPITATION 
 

 
 WITHOUT TRANSFORMATION         WITH TRANSFORMATION 
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MONTHLY MEAN TEMPERATURE 
 

 
 WITHOUT TRANSFORMATION   WITH TRANSFORMATION 
 
The above figures illustrate typical position of the errors. They are generally in narrow valleys 
and complex mountains – with several massifs like the Rhodope Mountains. 
 
 
Verification of the localization method with ERA40 coupling of ALADIN 
RCM 
 
 
Climatology 
The barrier effect of the Balkan Mountains is felt throughout the country. On the average, 
northern Bulgaria is more then one degree colder and receives annually about 190 mm 
precipitation more than southern Bulgaria. Black Sea is too small to be a primary influencing 
factor of the country's weather; it only affects a narrow zone along the cost: 
 

 
 
 
Verification dataset. 
The problem is that we have not observation network of 10 km. We decided to use 
observations from stations situated in places affected by the land and topography 
characteristics and proportionally distributed at the mentioned above. 3 regions. An important 
criterion is the quality and the period without breaks. We selected 56 stations shown below. 
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On the figures below observation (monthly mean temperature and monthly precipitation) are 
mentioned by blue color. The localization by direct bilinear approximation is indicated by red 
color and letter ‘L’. The green color stays for optimized bilinear interpolation indicated 
additionally by ‘P’. The biggest errors are located in the stations located in narrow valleys as 
it was mentioned above. 
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