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1. Introductory remarks 
 
The goal of this deliverable is to evaluate the downscaling models, both dynamical and statistical, 
according to a common set of criteria. The contribution of partners to this deliverable is twofold: some 
partners (CUNI, IAP, CHMI) validate all the available models over a common domain in central Europe 
according a wide range of validation criteria; others (NMA, NIMH, OMSZ) concentrate on their specific 
methods and/or models and a subset of criteria in the impact target area of their interest.  
 



2.1 Overview of CUNI, IAP, and CHMI activities for CECILIA D3.3 
The validation activities of CUNI were concentrated on the assessment of downscaling techniques, 
both statistical and dynamical, for the region of the Czech Republic, and identification of the best 
approach or approaches. Selected additional tests have also been carried out for CECILIA validation 
domain (see deliverable D3.1). Pre-selected statistical methods were implemented, with a special 
emphasis to the nonlinear ones. Determination of the most suitable predictors and values of parameters 
was carried out. Along with the outcomes of statistical downscaling techniques, outputs of two ERA-
40-driven regional climate models, RegCM and ALADIN, prepared in CECILIA WP2, were validated 
against a set of observed data from the Czech Republic as well as gridded observations. The target 
variables included daily mean, maximum and minimum temperature and daily precipitation. The 
validation statistics were selected to quantify the deterministic match of the observed and simulated 
data (root mean squared error, Pearson correlation coefficient), basic measures of position and spread 
of the statistical distributions (mean value, standard deviation), persistence of the time series (lag-1 
autocorrelation) as well as a general match of the statistical distributions (chi2 test-based score). 
 The comparison has shown a strong dependence of the results on the location of the measuring 
site and season/month. Overall, if a single method of downscaling is to be chosen for the area of the 
Czech Republic, the ALADIN model seems to produce the best or close-to-best results in most 
validation categories. With an aid from additional post-processing (removal of bias, variance increase, 
and correction for differences in altitude of real and model terrain), this model seems to provide 
satisfactory series of downscaled values of both temperature and precipitation. The RegCM model, 
while producing relatively realistic series of temperature-related characteristics, exhibits a very strong 
wet bias, sometimes almost doubling the average monthly precipitation sums. Further improvement of 
the RCM-generated data can be achieved by additional postprocessing, as shown in deliverable D3.2. 
The statistical downscaling techniques, especially the ones based on neural networks, seem to be fit 
for downscaling temperature (mean, maximum or minimum), but they produce unrealistically shaped 
statistical distributions of precipitation. The method of locally constant models does reproduce the 
statistical distributions of precipitation fairly well, but it is unable to capture the deterministic relation 
between large-scale predictors and local measurements (which is reflected in the low values of 
correlation between downscaled and observed data).   

2.2: Downscaling methods 
 
Five different statistical methods were applied, each embodying a different approach to construction of 
the transfer function between predictors and predictand. This versatility of the mappings should help 
to find the best mathematical representation of the relations between large-scale predictors and local 
measurements for each type of the target variable. 
 
Multiple linear regression (MLP). This basic statistical method computes the target value of 
predictand as a linear combination of the predictors. The exact form of the transfer function 
(determined by the values of the regression coefficients) is chosen to minimize the mean squared error 
of the mapping. 
 
Method of local linear models (LLM). Unlike MLR, this technique does not use linear models for 
the global description of the connections between predictors and predictand, but applies it individually 
for smaller regions of the space of predictors. Due to its local nature, LLM is well suited for capturing 
eventual nonlinear components of the relations. 
 
Method of locally constant models (LCM). This technique approximates the value of predictand by 
the average value, corresponding to a certain number of the most similar situations in the history of the 
analyzed system. Based on the outcomes of preliminary tests, only a single most similar state was used 
here, effectively turning the LCM technique into the method of analogues. The similarity of different 
states was quantified by the Euclidian distance of the respective vectors of predictors. 
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Radial basis function neural network (RBF). This architecture of artificial neural network is based 
on the use radial transfer functions for the neurons in the network's hidden layer. Unlike for multilayer 
perceptrons (see below), no iterative learning is required. Positions of the Gaussian radial units were 
initialized by the randomly selected cases from the set of training data here. 
 
Multilayer perceptron neural network (MLP) represents the most common type of artificial neural 
network, able to describe even complex nonlinear relations between inputs and target value(s). The 
networks used for downscaling here contained a single hidden layer with 20 neurons, with tanh 
activation functions. The network was trained by the iterative backpropagation algorithm in its basic 
form. 
 
All statistical downscaling (SD) methods were applied with predictor data normalized to zero mean 
and identical standard deviation, for the period 1961-1990. The mappings were created for the series 
as a whole, without separating the individual seasons or months (while such separation was also 
experimented with, it generally only provided a small decrease of RMSE). 
 
Along with the series generated by various techniques of statistical downscaling, outputs of two ERA-
40 driven regional climate models (RCMs) were included in the comparison. These simulations were 
run for the CECILIA project by Charles University (model RegCM) and by the Czech 
Hydrometeorological Institute (model ALADIN-Climate/CZ, hereinafter referred to as ALADIN). 
The integration domains of both models were centered on Central Europe (Fig. 2.1), their basic 
horizontal resolution was about 10 km. Although there are other regional climate models run within 
the frame of CECILIA, they either do not cover the Czech Republic at all, or its territory lies too close 
to the edge of the model domain. For a more detailed description of the regional climate models, see 
the report for the CECILIA deliverable D2.1.  
 

 
 
Fig. 2.1: Integration domains of CECILIA regional climate models. The two simulations employed for 
the present comparison are marked as CUNI (RegCM model run at Charles University) and CHMI 
(ALADIN-Climate/CZ of the Czech Hydrometeorological Institute). The colored area represents the 
domain of the ENSEMBLES project. 
 
The series of the target variables were available in the temporal resolution of 3 h (RegCM) or 6 h 
(ALADIN) from the RCMs. Their conversion to daily data was done as follows: 
- Daily maximum (minimum) temperature values were computed as maximum (minimum) values 
between 0:00 and 21:00 (18:00 for ALADIN) of the respective day (at Czech weather stations, the 

4



values of maximum and minimum temperature are read daily at 21:00 of the local time of the 
respective meridian - HMÚ, 1972), 
- Mean daily temperature was computed as an arithmetic average of values between 3:00 (6:00 for 
ALADIN) and 0:00 (at the weather stations, mean daily temperature is computed from temperatures at 
7:00, 14:00 and 21:00 as (T7 + T14 + 2T21) / 4), 
- Daily precipitation was computed as a sum of precipitation between 9:00 (12:00 for ALADIN) and 
6:00 of the following day (daily precipitation totals are read at 7:00 of the local time at Czech weather 
stations). 
 
2.3: Selection of predictors for statistical downscaling 

 
ERA-40 reanalysis was used as the source of predictor series for statistical downscaling. Geopotential 
height, temperature, relative humidity and specific humidity from various pressure levels were tested 
in the role of potential predictors. After the preliminary tests, only temperature and geopotential height 
were kept as potential predictors for downscaling temperature; for precipitation, specific humidity was 
included as well. Because of the potentially worse match between 1000 hPa fields of the predictor 
variables in the reanalysis and in the global climate models, only variables from the 850 hPa and 500 
hPa levels were used as potential predictors (i.e., variables representing the free atmosphere rather that 
the near-surface layer). The potential predictors were drawn from the area between 0° and 30°E and 
between 40°N and 60°N. 
 The actual selection of predictors was done individually for each combination of target 
variable and weather station. It was carried out by means of a simplified version of step-wise multiple 
linear regression, minimizing the out-of-sample RMSE. A fixed number of predictors (M = 20) was 
used for the final generation of downscaled series. This value of M was chosen after the tests with 
step-wise selection of predictors, which have shown that the decrease of RMSE ceases or becomes 
very slow before the dimension of the space of predictors exceeds approximately 20 (fig. 2.2). 
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Fig. 2.2: RMSE of mean daily temperature (upper panel) and precipitation (lower panel) downscaling 
by multiple linear regression as a function of the number of predictors. The boxplots show distribution 
of values in the set of RMSEs for 25 Czech weather stations. 
 
 
2.4: Determination of parameters for SD methods 
 
Except for MLR, all used methods of statistical downscaling are generally nonlinear and they require 
the choice of the value of one or more parameters. These parameters determine the complexity of the 
mappings (e.g., number of neurons in the neural nets), the way in which the mapping is initialized 
(e.g., learning rate) and other characteristics. The most suitable values of the needed parameters were 
identified prior to generating the downscaled series, individually for each type of the target variable. 
To avoid the influence of overfitting and overtraining the mappings, the best combinations of 
parameters were chosen based on the values of out-of-sample root mean square error: The SDS 
techniques were calibrated for the period 1961-1990, the error was then computed for the years 1991-
2000. Since it turned out that the optimum values of parameters were similar for all four types of 
target variables, a universal set of parameters could be used (table 2.1).  
 Note that the final validation, the results of which are shown in Sect. 2.7, was performed for 
the interval 1961-1990 only, and that data from this 30-year-long period were used for both calibration 
and testing of the mappings, to make the analysis consistent with the work on near future (2021-2050) 
and far future (2071-2100) time slices. 
 
 
Table 2.1: Applied methods of statistical downscaling and values of needed parameters. Where 
multiple values of a parameter are given, the computation was carried out for all of them, and the one 
producing the lowest RMSE was employed for generating the final series. Training of MLPs was 
repeated three times and the realization giving the lowest RMSE was used. 

 
Method Acronym Parameter Value(s) 

Multiple linear regression MLP - - 
Local linear models LLM Number of nearest neighbors 200, 400, 800 

Locally constant models (analogues) LCM Number of nearest neighbors 1 
RBF Number of neurons 300 Radial basis function neural network 

  Width of radial functions 50,100, 150, 200 
MLP Number of neurons 20 

 Learning rate 0.00001 
Multilayer perceptron neural network 

 
  Number of learning epochs 1000 

 

2.5 Validation criteria 
No specialized impact-related criteria were applied, the validation was based on standard statistics, 
able to quantify the deterministic match of the downscaled and observed series, as well as the 
correspondence of their statistical distributions or temporal structure of the series. The following 
characteristics were computed for the entire period 1961-1990 as a whole and for individual months: 
- Mean value,  
- Bias, computed as a difference between simulated and observed means, 
- Standard deviation, 
- Root mean squared error (RMSE), 
- Pearson correlation coefficient, 
- Lag-1 autocorrelation, which was included as a linear measure of persistence, i.e., of the common 
information content of values close in time. 
 
The strongly skewed distribution of daily precipitation cannot be sufficiently characterized by mean 
value and standard deviation alone. Therefore, a quantity was needed to evaluate the correspondence 
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of statistical distributions of values. Instead of employing a non-Gaussian parametric approximation, 
the fit of statistical distribution was quantified using a chi2 score, based on the definition of the 
statistic of the 2χ test: 
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where  ( ) represents the frequency of observed (simulated) precipitation in the i-th cathegory, i = 
1, …, M. The upper borders of the respective intervals were selected at values 0.1, 1, 2, 5, 10 and 20 
mm for daily precipitation. The chi2 quantity increases with the mismatch of occurrence of 
precipitation in individual categories, thus the values closest to zero indicate the best fit. 
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2.6 Validation data 
 
A set of daily values of mean, maximum and minimum air temperature and precipitation from 25 
Czech weather stations, operated by the Czech Hydrometeorological Institute, was employed for 
validating the downscaling results (fig. 2.3). The SD methods were used to directly reproduce the 
series recorded at the target site (i.e., the series of observations were used as predictands). In the case 
of RCMs, series from the grid point closest to the weather station was used for comparison with the 
measurements. Raw model outputs were considered, as well as series created by application of an 
elementary linear correction for the altitude difference 
 (corrected station GP )x x g h h= + − ,       (2.2) 
where g represents the mean vertical gradient of quantity x (computed over the entire period 1961-
1990 for individual months, using all grid points of the respective model in the area covered by fig. 
2.3). and are altitudes of the station and of the nearest model gridpoint, respectively. A 
similar correction was also tested based on daily values of the vertical gradient (i.e., computed 
separately for each day). The outcomes were similar to using the mean monthly correction and they 
are not shown here. In sect. 2.7, the results derived from the altitude-corrected RCM outputs are 
denoted as RegCM-C and ALADIN-C, respectively. 

stationh GPh

 
 

Longitude Latitude Altitude Name 
(°) (°) (m)  
    

17.57 49.32 224 Holešov 
16.69 49.16 241 Brno, Tuřany 
15.44 49.16 569 Kostelní Myslov
16.09 48.88 334 Kuchařovice 
16.01 49.35 452 Velké Meziříčí 
13.99 49.04 536 Husinec 
13.61 49.07 1118 Churáňov 
15.84 50.17 278 Hradec Králové 
16.03 49.74 737 Svratouch 
13.3 49.39 430 Klatovy 

13.49 49.99 468 Kralovice 
12.68 49.67 742 Přimda 
12.39 50.07 471 Cheb 
17.54 49.77 750 Červená 
18.44 49.73 300 Lučina 
18.44 49.54 1324 Lysá hora 
18.12 49.69 251 Mošnov 
17.97 49.46 334 Valašské Meziříčí
14.26 50.1 364 Praha, Ruzyně 

15 50.37 234 Semčice 
15.58 49.61 455 Havlíčkův Brod 
14.17 50.46 158 Doksany 
13.54 50.33 201 Žatec 
15.02 50.77 398 Liberec 
14.66 49.01 439 Třeboň 

 

á 

 
Fig. 2.3 Orography of the Czech Republic (m) with locations of the 25 stations used for the validation 
of SD/RCM outputs (left) and list of the stations (right). Source of the high-resolution orography data: 
U.S. Geological Survey (http://www.usgs.gov/). 
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2.7 Validation results 
 
The results are sorted by the variable type, with a short overview at the beginning of each section 
(sects. 2.7.1 through 2.7.4). A summary evaluation of individual downscaling methods is then given in 
sect. 2.7.5. Because of the high number of combinations of variables/stations/seasons/criteria, most of 
the results are provided in the form of boxplots, created from the results for all 25 validation stations. 
In the case of precipitation (as the most difficult variable to downscale), some additional graphs are 
shown for station Holešov.  
 
 
2.7.1 Daily mean temperature 
 
The deviations of the monthly means of air temperature from the observed values are shown in fig. 2.4 
for all methods and climatic seasons. It is clear that all techniques produce slightly biased series, but 
the magnitude of the difference varies with the station as well as season (for the year as a whole, MLR 
and RBF techniques are bias-free, as a result of the least-square optimization of the respective 
mappings). The bias and its changes during the year are also well detectable from the boxplots of 
monthly mean temperature in fig. 2.5. It is noteworthy that all methods, statistical and dynamical alike, 
exhibit a cold bias in spring. Since the driving data were obtained from the same reanalysis dataset, it 
can be speculated that this bias has been enforced by the character of ERA-40 data. It can also be 
mentioned that the SD methods were applied for the year as the whole, not individual seasons/months. 
Should the seasonalization be applied, the bias would be further reduced, but inhomogeneities could 
be introduced into the resulting series by the fact that different mappings (or, more precisely, sets of 
coefficients) would be used for different parts of the year. The relatively high warm bias of the 
RegCM and ALADIN models for some measuring sites (manifested as the extended positive tail of the 
boxplots) is caused by the presence of mountainous stations (especially Lysá hora and Chráňov) in the 
validation dataset, which are located much higher than the matching gridpoint of the RCMs. 
Application of a simple correction of the altitude difference (eq. 2.2) can reduce the severity of this 
problem (compare the boxplots marked as RegCM-C and ALADIN-C to those for raw model data, 
RegCM and ALADIN). 
 Both RCMs underestimate the dispersion of temperature values (fig. 2.6). For RegCM, the 
decreased variance is especially apparent in summer, for ALADIN in all seasons except autumn. In the 
case of SD methods, the standard deviation of temperature is typically more realistic, although the 
tendency for lower variance is also detectable (except for LCM, which overestimates the spread of 
values in some seasons). 
 The SD methods (except for LCM) give lower values of RMSE and higher correlation with 
series of observations than RCMs. However, this can be partly an effect of the choice of predictors, 
done to minimize RMSE of downscaling by linear regression. Also, especially in the case of MLP and 
RBF neural networks, mild overfitting of the mapping can play a role, due to the fact that the SD 
techniques were both calibrated and tested for the same interval. 
 Finally, all methods tend to produce series exhibiting slightly stronger persistence of values in 
all seasons but winter (fig. 2.9). The only exception is the LCM method, which generates series with 
much weaker autocorrelation than detected in the observed series. 
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Fig. 2.4: Distribution of mean daily temperature bias for different methods of downscaling. The 
results for individual seasons are based on bias computed for separate months, for 25 Czech weather 
stations from fig. 2.3; the boxplots show minimum, q25, median, q75 and maximum values in the 
resulting set of 75 values. 
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Fig. 2.5: Distribution of monthly averages of mean daily temperature for observed data and 
different methods of downscaling. The boxplots show minimum, q25, median, q75 and maximum 
values in the set of 25 Czech weather stations. 
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Fig. 2.6: Same as fig. 2.4, for standard deviation of mean daily temperature.  
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Fig. 2.7: Same as fig. 2.4, for RMSE of mean daily temperature. 
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Fig. 2.8: Same as fig. 2.4, for correlation of downscaled and observed mean daily temperature. 
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Fig. 2.9: Same as fig. 2.4, for lag-1 autocorrelation of mean daily temperature. 
 
 
2.7.2 Daily maximum temperature 
 
The results for daily maximum temperature are qualitatively similar to those for mean temperature. 
The systematic cold bias is still present for all methods in spring, as it is for both RCMs in summer at 
most stations (fig. 2.10). In winter, a warm bias is typical for all SD methods. The general tendency 
for lower dispersion of downscaled temperature is detected for both RCM, less so for the SD 
techniques (fig. 2.11), except for the LCM method, which typically produces series with rather higher-
than-real standard deviation for individual months. The highest correlation and lowest RMSE are 
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usually found for the SD methods except for LCM (figs. 2.12 and 2.13), with RBF and MLP neural 
networks achieving the best fit between downscaled and observed data. A slight tendency for stronger 
persistence is still typical for all downscaling methods but LCM (fig. 2.14). 
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Fig. 2.10: Same as fig. 2.4, for bias of maximum daily temperature. 
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Fig. 2.11: Same as fig. 2.4, for standard deviation of maximum daily temperature. 
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Fig. 2.12: Same as fig. 2.4, for RMSE of maximum daily temperature downscaling. 
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Fig. 2.13: Same as fig. 2.4, for correlation of downscaled and observed maximum daily 
temperature data. 
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Fig. 2.14: Same as fig. 2.4, for lag-1 autocorrelation of maximum daily temperature data. 
 
 
2.7.3 Daily minimum temperature 
 
Similarly to daily mean and maximum temperature, cold bias is typical for all methods of downscaling 
daily minimum temperature in spring (fig. 2.15), and for the RegCM model in summer. The 
underestimation of the series' dispersion is strongest for the ALADIN model, especially during winter 
months (fig. 2.16). The highest values of correlation and lowest RMSE are again typical for the 
SD methods except for LCM (figs. 2.17 and 2.18). A tendency for stronger persistence is still found 
for all downscaling methods but LCM (fig. 2.19), with the best match in winter (except for ALADIN, 
which somewhat underestimates autocorrelation in winter months). 
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Fig. 2.15: Same as fig. 2.4, for bias of minimum daily temperature. 
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Fig. 2.16: Same as fig. 2.4, for standard deviation of daily minimum temperature. 
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Fig. 2.17: Same as fig. 2.4, for RMSE of daily minimum temperature downscaling. 
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Fig. 2.18: Same as fig. 2.4, for correlation of downscaled and observed daily minimum 
temperature data. 
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Fig. 2.19: Same as fig. 2.4, for lag-1 autocorrelation of daily minimum temperature data. 
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2.7.4 Daily precipitation 
 
Monthly mean sums of precipitation are captured reasonably well by all methods but the RegCM 
model, which exhibits a strong wet bias throughout the year (fig. 2.20). Again, the exact value of bias 
varies with location of the station as well as month/season of the year, but the shape of the annual 
cycle of precipitation is captured realistically (fig. 2.26). 
 The deterministic connection between observed and downscaled data is rather weak for all 
methods. The relatively lowest values of RMSE (and highest correlations) were detected for the SD 
methods except for LCM, especially for both types of neural networks (figs. 2.22 and 2.23). Curiously, 
despite the wet bias of RegCM, the values of RMSE are almost identical for both regional climate 
models, probably because of the dominant influence of the misplaced days with high precipitation (as 
fig. 2.29 illustrates). It seems that no downscaling technique is able to reliably reproduce the location 
of precipitation events in time together with their magnitude, as scatterplots in fig. 2.28 show for four 
selected methods. 
 As for the statistical distribution of downscaled daily precipitation, the best fit is achieved by 
the LCM method (fig. 2.25). This, however, is due to the fact that LCM basically resamples the values 
of predictand from the training section of data. All other SD techniques show an extreme tendency to 
produce an overly symmetric distribution of values with lower than observed variance, 
underestimating the occurrence of both low and high precipitation amounts (as seen in fig. 2.27 for 
MLP), and strongly underestimating the number of days without precipitation. The ALADIN model 
reproduces the observed distribution of daily precipitation fairly well in autumn and winter, slightly 
less so in spring and summer (fig. 2.25). For RegCM, the statistical distribution is distorted by the wet 
bias. Also, the amount of days with precipitation < 0.1 mm is much smaller than in reality (fig. 2.27) 
for this model. 
 All SD methods but LCM produce precipitation series with too strong autocorrelation (fig. 
2.24). This is consistent with their inability to respect the statistical distribution of observed 
precipitation, and cumulation of the precipitation amounts close to the mean value of the respective 
series. For RCMs (especially ALADIN), the persistence is more realistic. 
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Fig. 2.20: Same as fig. 2.4, for daily precipitation bias. 
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Fig. 2.21: Same as fig. 2.4, for standard deviation of daily precipitation. 
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Fig. 2.22: Same as fig. 2.4, for RMSE of daily precipitation. 
 
 
 
 

RCMs:
 RegCM
 ALADIN
 RegCM-C
 ALADIN-C

SDS:
 MLR
 LLM
 LCM
 RBF
 MLP

Year DJF MAM JJA SON

SEASON

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
or

re
la

tio
n

 
Fig. 2.23: Same as fig. 2.4, for correlation of downscaled and observed daily precipitation data. 
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Fig. 2.24: Same as fig. 2.4, for lag-1 autocorrelation of daily precipitation. 
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Fig. 2.25: Same as fig. 2.4, for chi2 score (as defined by eq. 2.1), derived from daily precipitation 
data. 
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Fig. 2.26: Mean values of observed and downscaled precipitation, for the set of 25 Czech weather 
stations. 
 
 

 

 
Fig. 2.27 Distribution of daily precipitation in January (upper panel) and July (lower panel), measured 
and downscaled by different methods (station Holešov). 
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Fig. 2.28: Plots of daily precipitation simulated by different methods of dynamical and statistical 
downscaling vs. observed precipitation (station Holešov). 
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Fig. 2.29: Time series of daily precipitation, observed and simulated by different methods of 
dynamical and statistical downscaling (station Holešov; the x-axis shows number of days since 
1/1/1961). 
 
 
2.7.6 Ranking of downscaling methods 
 
Although it would be formally possible to sort the individual techniques according to any criterion, the 
above results indicate that such benchmarking would be of limited value, as the recommendation 
would vary with the type of variable as well as the season of the year. For the sake of consistency, it is 
beneficial to use the same downscaling method for all variables, and to select it according to the 
preferences of the follow-up impact-oriented application. Therefore, instead of a strict ranking, the 
basic conclusions have been summarized here: 
 
- For temperature data, no method seems to suffer from a critical, irremediable problem, with 
the exception of the LCM technique. The high values of bias, detected in case of both regional 
climate models for some stations, are to the large part due to the altitude mismatch between the 
measuring site and the nearest grid point of the model. This can be easily amended by a correction 
computed from the vertical temperature gradient (such as eq. 2.2). Similarly, the eventual 
discrepancies of mean value and dispersion can be corrected by a simple linear transformation. Further 
bias-corrective techniques can also be used (deliverable D3.2). As for the SD techniques, there is no 
major difference between the character of outcomes of LLM, RBF and MLP methods. In most cases, 
they are superior to multiple linear regression (especially in terms of RMSE or correlation), although 
the gain is rather small on average. The LCM method does not seem to be suitable for downscaling of 
daily temperatures, because of the distorted temporal structure of its outputs (profoundly decreased 
values of autocorrelation). 
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- Precipitation downscaling is generally considered more challenging than downscaling of 
temperature, particularly for daily data, and none of the tested methods performed satisfactorily in all 
respects. The best match of the statistical distributions was achieved by LCM, which is working as a 
resampling technique, re-distributing values of predictand from the calibration set of data. On the other 
hand, only values already existing in the training set may appear in the downscaled series, making 
LCM unsuitable for situations when profound changes in the distribution of values are expected for 
the target variable in the future. LCM also tends to behave in a more stochastic fashion than other 
statistical methods, which causes a weaker correlation of its outcomes with the original series of 
measurements, and weaker autocorrelation within the downscaled series. The strong wet bias of 
RegCM (although partially correctable) indicates some serious problem of this model regarding 
precipitation. The nonlinear SD techniques (LLM, RBF, MLP) would require massive statistical 
corrections to be able to realistically reproduce daily precipitation series; the same goes for multiple 
linear regression. Therefore, without an intensive post-processing (such as a complete transformation 
of the shape of the statistical distribution of downscaled series), the best choice for downscaling 
daily precipitation probably lies with the ALADIN model, which produces series of daily 
precipitation with an autocorrelation structure close to observations, with a realistic enough 
distribution of values. In deliverable D3.2, it is demonstrated how the RCM outputs (both ALADIN 
and RegCM) can be further modified to eliminate not just most of the biases, but to bring a more 
realistic shape of the PDF in general to the simulated precipitation series. 
 
 The results presented above show a comparison done for the calibration/validation dataset of 
measurements obtained at Czech weather stations. Analogical analysis was also carried out for a 
gridded dataset of daily temperatures (maximum and minimum) and precipitation, created over the 
CECILIA Central-European validation domain (deliverable D3.1). Since the outcomes and 
conclusions are very similar to the ones presented above, they are not shown here; selected results 
were, however, included in the deliverable D3.2. 
 
2.8 Temporal and spatial autocorrelations 
 
Additional validation analyses were conducted on the common domain along the 
Czech/Austrain/Slovak/Hungarian borders; its more detailed description can be found in D3.1.  
Here we show an example for the ALADIN-Climate/CZ RCM nested in ERA-40 reanalysis. Two 
statistical properties, potentially important in various impact sectors, namely, spatial and temporal 
autocorrelations, are examined for daily maximum temperature (more precisely, for anomalies fro the 
mean annual cycle). The reality is represented by the gridded dataset, composed of observed data 
interpolated to the location of ALADIN’s gridpoints – see Fig. 2.30.  
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Fig. 2.30. Gridpoints used in the analysis. 
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Fig. 2.31. Lag-1 autocorrelations (x100) in observed (gridded) data (top), RCM output 
(middle), and their difference (model – observed, bottom).  
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Fig. 2.32. Histogram of bias of lag-1 autocorrelations (x100).  
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Fig. 2.33. Spatial autocorrelations (x100) with the northernmost gridpoint (49.69°N, 13.87°E) 
in observed (gridded) data (top), RCM output (middle), and their difference (model – 

observed, bottom).
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Fig. 2.34. Histogram of bias of lag-1 autocorrelations (x100).   
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The temporal autocorrelation, i.e, persistence, is expressed as autocorrelations with a lag of 1 day. 
Results are displayed in Fig. 2.31. Clearly, the persistence is lower in the RCM output (middle panel) 
than in observations (top panel) over a large part of the domain. Small scale features present in the 
map for observed data may be a result of orography or an artefact of the gridding procedure; however, 
they are of secondary importance since the differences (bottom panel) show a clear signal of an 
underestimation of persistence of between 0 and 0.05. An even clearer picture is obtained if a 
histogram of differences is produced (Fig. 2.32). The negative bias of persistence in the RCM output, 
peaking between –0.03 and –0.04, is obvious.  
As an example of the spatial autocorrelation, we show autocorrelations with the northwesternmost 
gridpoint (49.69°N, 13.87°E) (Fig. 2.33). The decrease of autocorrelations is much less steep in the 
model than in reality, and this is especially so close to the reference gridpoint. That is, spatial 
autocorrelations are underestimated over the majority of the domain, with an exception of the most 
distant southeasternmost corner of the domain. Similarly to temporal autocorrelations, the positive bias 
of spatial autocorrelations can be well seen on the histogram of differences (Fig. 2.34). The mean as 
well as median of the bias of spatial autocorrelations amount to 0.083.  
 
These results inform us that validation of RCM outputs should be conducted also for other quantities 
than mean and standard deviation.  
 
References: 
HMÚ (1972): Návod pro pozorovatele meteorologických stanic ČSSR, Hydrometeorologický ústav, 
Praha, 222 pp. (in Czech) 
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3. NMA contribution on the D3.3: Validation of the statistical downscaling 
models 
 
3.1. Data and methods 

The statistical downscaling models (SDMs) used by the NMA in the CECILIA project 
are based on the canonical correlation analysis (CCA) technique (Von Storch et al., 1993, 
Busuioc et al., 1999, 2006). These models have been developed for the mean temperature (94 
stations covering the entire Romania) and precipitation total (16 stations covering a southeastern 
area, used for the impact studies in CECILIA).  In a previous work (Busuioc et al., 2006) has 
been found that, in case of precipitation,  it is difficult to find a single skilful SDM for the entire 
Romanian area, due to the complex Romanian topography. Figure 3.1 shows the position of the 
16 stations used in this study. Compared to the previous studies, taking into consideration the 
impact needs, the SDMs have been constructed for monthly values.  

  

 
 
Figure 3.1. The location of the stations used in developing the SDMs for precipitation.  
 
The temperature field at 850 mb (T850) has been considered as predictor for temperature 

while the sea level pressure (SLP), geopotential heights at 500 mb (H500) and specific humidity 
at 850 mb (separately or in combination) have been tested as predictors for precipitation. The 
predictor area and optimum predictor combination (number of EOFs used in CCA and number of 
CCAs used in SDM) has been selected so that the SDM skill (defined as correlation between 
observed and estimated values as well as fraction of the explained variance of estimated values 
from the total observed variance) is highest. The anomalies of the predictor and predictands 
projected onto the main EOFs (empirical orthogonal functions) have been used as inputs in the 
SDMs.  

The temperature SDMs have been developed over the warm (May-October) and cold 
seasons, respectively, considering the respective monthly anomalies together. For precipitation, 
the SDMs have been developed for each of the four seasons (DJF, MMA, JJA, SON). In this 
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way, longer time series are available to calibrate and validate the SDMs, namely more 6 times 
for temperature and 3 times for precipitation. The stability of the skill, calculated over the 
independent data set, has been tasted, considering three validation intervals: 1961-1980 (fitting 
1981-1999), 1981-1999 (fitting 1961-1980), 1991-2007 (fitting 1961-1990). The last validation 
interval has been considered in order to see if the SDM is capable to reproduce the extreme 
events during the last decades using the models calibrated over the 1961-1990. These models 
have been used to produce the scenarios for the near (2021-2050) and far (2070-2099) future. 
The predictors simulated through 9 GCMs (8 ENSEMBLES stream 1 simulations and ARPEGE) 
have been used as inputs in SDMs. The results are presented in the deliverables D 3.4 and D3.5. 
 
3.2. Results 
Temperature 
  
 It has been found that the optimum T850 area used as predictor in developing the SDM 
for monthly temperature anomalies at the 94 Romanian stations covers the area between 15E-
35W and 35N-50N. For the warm season (May-October) a little bit higher skill is obtained for 
the area between 17.5E-32.5E and 40-50N. In figure 3.2, in case of the warm season, the SDM 
performance, represented by the explained variance, for two independent data sets (1961-1980, 
1981-1999) is presented. It can be seen that the skill is high and stable, the highest values being 
for the western and intra-Carpathian area.  Same spatial distribution of the skill has been 
identified for the cold season but with a little bit lower magnitude. In both cases the mountain 
stations present the highest skill, showing that the surface conditions are less important in these 
cases. 
 

  

Figure 3.2. Skill of the statistical downscaling model, expressed as fraction of the explained variance by 
the estimated values from the total observed one, for the monthly mean temperature anomalies (May-
October) derived for the two independent data sets (1961-1980, 1981-1999).   
 
The SDM credibility in estimation the future temperature change have been tested by applying 
the SDM calibrated over the 1961-1990 to the T850 anomalies calculated over the period 1991-
2007 against 1961-1990. It has been found that temporal evolution as well as the magnitude of 
the observed temperature anomalies is very well reproduced. Figure 3.3 shows an example for 
July. 

29



 
 

nomalii temperatura (0C) Iulie, TR. MAGURELE

-1

0

1

2

3

4

5

199

Anomalii temperatura (0C) Iulie, SINAIA
5

 
Figure 3
calculate
calibrate
explaine
 
 I
little bit
summer
 
Precipit

I
signific
of the o
which is
Regardi
indepen
with hig
In table
over the
winter 
precipit
SLP an
estimate
homoge
autumn)
region i
previou
stations
and spr
region, 

 
 
 
 
 

A

1 1996 2001 2006

Down.
Obs.

-1
0

1
2

3
4

199

.3. Monthly temperature anomalies in July over
d directly from observation (red) and indirectly 
d over 1961-1990 (blue). Case of two stations: Tu
d variance) and Sinaia (SDM with the highest skill-

t can be seen that the strong anomalies from 
 lower magnitude, probable because of a pers
 2007. 

ation 
n case of precipitation, skilful SDMs have als

ant at almost all stations) is lower. Since the e
bserved anomalies is not always well reproduc
 better reproduced. Figure 3.4 shows an examp
ng the stability of the skill, there are differen
dent data set but the optimum combination of 
hest skills. The obtained results show that the
 3.1 the SDM skill over the independent data
 1961-1990 is presented.  It can be seen tha

and lowest for summer. The SDM credibil
ation change has been tested by applying the S
omalies calculated over the period 1991-200
d changes are presented in Table 3.2. When 
neous over the entire analysed region (decr
, it is well reproduced by the SDM, showing 
s well controlled by the large-scale SLP varia
s studies (e.g. Busuioc and von Storch, 1996, B
 over the entire Romania have been considered.
ing are also quit well reproduced. Considering
these results are promising in order to obtain pl

30
1 1996 2001 2006

Down.
Obs.

 

 the period 1991-2007 (against 1961-1990) 
from the T850 anomalies through the SDM 

rnu Magurele (SDM with the lowest skill-78% 
93% explained variance).   

July 2007 are well reproduced but with a 
istent very dry soil conditions during the 

o been obtained, but the skill (even if it is 
xplained variance is lower, the magnitude 
ed, compared with the temporal evolution 
le for summer and winter.  
ces between its magnitudes for different 

the predictors is placed among the models 
 SLP is the best predictors for all seasons.  
 set 1991-2007 with the model calibrated 
t the highest skill has been obtained for 
ity in estimation of the future monthly 
DM calibrated over the 1961-1990 to the 
7 against 1961-1990. The observed and 
the observed climate signal is strong and 
ease during winter and increase during 
that the precipitation variability over this 
bility, this result being in agreement with 
usuioc et al., 19999) when representative 

 The not significant changes from summer 
 the complex topography in the analysed 
ausible future scenarios.  



References 
Busuioc A, von Storch H (1996)  Changes in the winter precipitation in Romania and its relation 

to the large scale circulation. Tellus 48A: 538-552. 

Busuioc A, von Storch H, Schnur R (1999) Verification of GCM generated regional seasonal 

precipitation for current climate and of statistical downscaling estimates under changing 

climate conditions. J Climate 12: 258-272 . 

Busuioc, A, F. Giorgi, X. Bi and M. Ionita, 2006: Comparison of regional climate model and 

statistical downscaling simulations of different winter precipitation change scenarios 

over Romania. Theor. Appl. Climatol.,86, 101-124. von Storch H, Zorita E, Cubasch U 

(1993) Downscaling of global climate change estimates to regional scale: An application 

to Iberian rainfall in wintertime. J Climate 6: 1161-1171  

von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to 

regional scale: An application to Iberian rainfall in wintertime. J Climate 6: 1161-1171  

 
 
Table 3.1. SDM skill of the monthly precipitation anomalies at the 16 stations (Figure 3.1), expressed as 
correlation coefficient and fraction of the explained variance (*100), calculated for the independent data 
set 1991-2007 with the SDM fitted over the period 1961-1990.  Negative values for the fraction of the 
explained variance indicate some events with opposite sign between observed and estimated anomalies 
 
Skill  Stations 
     1      2      3      4      5       6       7      8      9    10    11    12    13    14    15    16    M 
  Winter 
Corelation 57    56    61    51    41    46    52    60    61    51    53    50    67    42    50    59   54 
Variance 25    28    36     3      -1    13    26    32    31    25    26    21    38   -15    10   22    20 
  Spring 
Corelation 36    51    63    45    56    38    51    47    38    55    53    58    38    41    36    63   48 
Variance 13    23    37    19    30    15    25    21    14    30    27    33    14    13    12    34   23 
  Summer 
Corelation  43    42    34    29   53    25    48    45    55    62    44    31    51    46    28    48   43 
Variance  17    18      7      6   26      3     22    20    28    34    19      9    24     21     6     17   17 
  Autumn 
Corelation 48    45    63    35    40    43    50    47    44    49    35    37    43    50    41    62   46 
Variance 23    20    40    11    14    12    21    22    19    20      9    12    18    25    16    20   19 
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 Figure 3.4. Standardised anomalies of the monthly precipitation for summer (Ploiesti station) and winter 
(Targoviste station) derived directly from observation (black) and indirectly from the SLP anomalies over 
the period 1991-2007 (against 1961-1990) through the SDM calibrated over the 1961-1990 interval. For 
every season the monthly anomalies are considered together. On the X axis their chronological order is 
noted. 
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Table 3.2. Change (%) of the monthly precipitation total over the period 1991-2007 against 1961-1990, 
derived directly from observations and indirectly through the SDM fitted over the period 1961-1990. 
 

  Station XII   I   II   III   IV   V   
   Model Obs. Model Obs. Model Obs. Model Obs. Model Obs. Model Obs. 

1 Câmpina -7.2 -2.5 -27.2 -23.1 -32.4 -49.1 6 -2.1 0.4 -6.6 -2.2 
-

23.5 

2 Călăraşi -18.7 14.2 -31.6 -1.9 -31.6 -27.7 7.8 34.7 -1.3 21.7 -4.4 
-

26.6 
3 Fundata -16.7 1.8 -15.3 -17.1 -13.4 -8 14.5 51.2 0.9 -3.7 -2.2 -3.9 
4 Fundulea -12.6 -3.9 -33.5 -22.2 -36.3 -38.3 2.6 7.5 -3.7 3.4 -5.6 -5.4 
5 Giurgiu  -10.5 7.1 -24.4 -19.6 -33.9 -8.4 19.1 5.2 7.5 -14.5 -2.7 -5.8 

6 Griviţa -18.7 10.3 -36.9 -18.7 -35.6 -55.1 6.9 9.7 -3 11 -4.3 
-

19.4 

7 
Int. 
Buzăului -17.7 0.2 -14.6 -18.6 -13.6 10.8 23.7 41.3 1.7 8.5 -1.5 

-
13.8 

8 Piteşti  -8.5 -10.7 -25.5 -5.4 -30.9 -20 11.5 15 3.2 10.8 -2.2 -3.5 

9 Ploieşti  -11.2 9.5 -30.2 -9.7 -36.7 -33.5 6 11.2 -1 -8.9 -3.4 
-

18.1 
10 Predeal -12.3 -14.2 -15 -14.4 -15 -4.4 16.5 31.2 1.4 -10.5 -1.9 -8.7 
11 Rm. Sărat -9.5 22.6 -30.7 -13 -35.3 -39.7 12.8 12.5 3.2 -9.7 -2 -7.1 

12 Sinaia -2.2 0.7 -12.4 -20.8 -18.1 -23.9 6.3 1.1 -0.6 -19.4 -2.3 
-

19.2 

13 Târgovişte -8.4 -7.4 -24.3 -16.7 -31 -33.5 7.1 3.5 -0.1 -1.9 -3.3 
-

14.9 

14 
Tr. 
Măgurele -9 -18.5 -21.2 -34.9 -29.9 -23.8 20.6 

-
15.1 8.6 -7 -3 1.4 

15 Urziceni -16.1 8.6 -35.3 -21.8 -34.8 -55 -2.5 -9.3 -7.1 -0.7 -6.3 -9 

16 Vf. Omu -26.1 -37.5 -23.8 -41.3 -23.7 -39 4.5 -16 -11.3 -32 -8.6 
-
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  Station VI   VII   VIII   IX   X   XI   
   Model Obs. Model Obs. Model Obs. Model Obs. Model Obs. Model Obs. 

1 Câmpina -6.3 -2.7 4.1 4 11.5 19.7 29.7 48.5 8.7 0.1 14.2 0.1 
2 Călăraşi -12.3 -2.7 -11.5 -4.7 -0.4 0.7 22.9 70.6 6 32.6 3.6 32.6 
3 Fundata -10.2 -8.8 9.5 -6.7 12.3 11.4 27.2 26.5 18.2 9.8 8.1 9.8 
4 Fundulea -15.4 1.1 -3.7 32.6 6.4 8 22 48.5 3.5 86.2 1.2 86.2 
5 Giurgiu  -14 3.4 -3.8 19.3 4.2 -8.5 25 40.8 7.8 72.4 2.1 72.4 
6 Griviţa -11.8 21 -11.4 -6.5 0.3 -27.4 29.9 41.6 9.4 30.5 9.5 30.5 

7 
Int. 
Buzăului -10.4 0.3 -6.1 -11.1 1.9 20.9 23.9 16.9 16.2 14.1 7.9 14.1 

8 Piteşti  -10.5 -14.7 11.8 21.8 19.8 36.1 32.1 46.1 11.6 19.1 15 19.1 
9 Ploieşti  -5.9 -2.1 4 0.7 12.4 21 24 53.6 2.8 36.8 10.5 36.8 

10 Predeal -9 -9.5 -1.1 -8 5.7 22.4 25.6 26.3 20.3 8.8 8.4 8.8 
11 Rm. Sărat -11.5 -1.1 -6.9 10.1 2.2 17.9 26.9 21.2 9.9 68.5 12.5 68.5 
12 Sinaia -8.3 -8.4 9.2 -10.1 13 16.7 31.8 33.6 13.5 0.9 13.8 0.9 
13 Târgovişte -6.6 -5.8 8.8 0.5 17.6 40.1 33.2 52.4 9.8 28.1 14.3 28.1 

14 
Tr. 
Măgurele -15.4 -15.9 0.9 8.5 5.2 4.9 28.7 56.4 5 39.4 6.9 39.4 

15 Urziceni -13.7 6.8 -7.3 19.4 3 -2.7 25.1 56.2 4.8 41 5.2 41 

16 Vf. Omu -12.5 -19.4 7.3 -13.1 8.5 -7.2 19.3 17 14.5 -8.7 -11.7 -8.7 
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4. Contribution by OMSZ: validation of ALADIN/Climate/HU 
 
OMSZ in their contribution to D3.3 concentrated on a basic validation of the Hungarian 
version of the ALADIN RCM for the Hungarian territory.  
 
4.1. Basic description of ALADIN-CLIMATE/HU 

 
• Model version: ALADIN-Climate V4.5 
• Domain: Carpathian Basin (lat: 44.64 – 50.01 N; lon: 12.44 – 25.22 E) 
• Horizontal resolution: 10 km 
• Integration period: 1958 – 2000 
• Evaluation period: 1961 – 1990 
• LBC: ERA-40; coupling: 6h 
• Dynamics:  Spectral model 

Hydrostatic 
  Hybrid vertical coordinates 

    SISL advection scheme 
    LBC: Davies-scheme 
    Prognostic variables: surface pressure 
       temperature 
       horizontal wind components 
       specific humidity 

• Physics: FMR radiation scheme 
ISBA scheme for soil 
Bougeault scheme for deep convection 
Ricard and Royer scheme for large scale cloudiness 
Smith scheme for large scale precipitation 

 
 
 
4.2. Observed data for validation 

 
• CRU 10’ (www.cru.uea.ac.uk) 
• HUGRID:  Interpolated gridded dataset (0.1 deg regular grid) over 

Hungary 
 

 
4.3. Validation 

 
4.3.1. Annual temperature 

 
Comparing the model simulation to CRU10’ and HUGRID observations, generally 
speaking 1-3 degree underestimation had been found. The errors are higher in the Alps 
and near to the model boundaries. 

 
 

34

http://www.cru.uea.ac.uk/


Fig. 4.1. Difference of annual mean temperature (ALADIN-CLIMATE – CRU(10’) 
[oC]) 

 

 
 
 
 

Fig. 4.2. Difference of annual mean temperature (ALADIN-CLIMATE – HUGRID 
[oC]) 

 

 
 
4.3.2. Seasonal temperature 

 
Regarding the seasonal mean temperature, in spring and autumn a higher underestimation 
can be noticed than in the annual case. The errors generally exceed even the 5 degree in 
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some mountainous places, and even 7-10 degree in the Alps. In summer the model is 
quite perfect, in winter the simulation is colder than the observations, but this 
underestimation is not as large as in the transitional seasons. 
 

Fig. 4.3. Difference of seasonal mean temperature (ALADIN-CLIMATE – CRU(10’) 
[oC]) 

 
SPRING    SUMMER 

 
AUTUMN    WINTER 

 
 

Fig. 4.4. Difference of seasonal mean temperature (ALADIN-CLIMATE – HUGRID 
[oC]) 

 
SPRING    SUMMER 

 
AUTUMN    WINTER 
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4.3.3. Annual precipitation 
 
Looking at the annual relative difference of precipitation, the biggest errors can be 
noticed at the edge of the domain. Still, the relative difference remains moderate in the 
south-west part of the Carpathian Basin. 

 
 

Fig. 4.5. Annual relative difference of precipitation 
[ALADIN-CLIMATE – CRU(10’)]/CRU(10’) [%] 

 

 
 
 
 

Fig. 4.6. Annual relative difference of precipitation 
[ALADIN-CLIMATE – HUGRID]/HUGRID [%] 
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4.3.4. Seasonal precipitation 
 

Analyzing the seasonal relative difference maps of the precipitation, large differences can 
be noticed between the spring and summer seasons and autumn and winter seasons. In 
spring and summer the simulation overestimates the precipitation by 50-100 % in the 
Basin, and by 150-300% at the northern and eastern edge of the domain. At the same 
time, opposite tendencies can be seen at the south-west part of the domain. However, the 
forecast underestimates the autumn precipitation over about 90% of the whole area. The 
errors are between 10% and 30% in the centre, on the other hand, at the south-west and 
the north-east part of the domain exceed the -100% and the 100-150% respectively. In 
winter the picture is diverse and ‘spotty’, except for the inner Basin, where the prediction 
is almost perfect. 
 
 

Fig. 4.7. Seasonal relative difference of precipitation  
[ALADIN-CLIMATE – CRU(10’)]/CRU(10’) [%] 

 
SPRING    SUMMER 

 
AUTUMN    WINTER 
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Fig. 4.8. Seasonal relative difference of precipitation  
[ALADIN-CLIMATE – HUGRID]/HUGRID [%] 

 
SPRING    SUMMER 

 
AUTUMN    WINTER 

 

 
 
 
 
 
 
 
 
4.3.5. BIAS and RMSE of the annual and seasonal temperature and 
precipitation simulations in the area of Hungary 
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Quantifying the results above, four tables are shown with the temperature bias (1), 
precipitation bias (2), temperature rmse (3) and the precipitation rmse (4) for the annual 
and seasonal means of the 1961-1990 period, and only for Hungary.  
 
Certainly the numerical results confirm the general behaviour of the model as depicted 
from the subjective evaluation of the maps. First of all, there is no significant difference 
between the comparison against the CRU10’ and the HUGRID datasets over Hungary. 
The summer season is special for temperatures (the best season) and at the precipitation 
(the worst season) as well. On the other hand, in winter the simulation is rather perfect in 
temperature and precipitation fields as well. 
 
 

TEMPERATURE 
BIAS [C] 

 
YEAR 

 
SPRING 

 
SUMMER 

 
AUTUMN 

 
WINTER 

ALADIN-CLIMATE – CRU10’ -1.50 -2.12 -0.60 -2.66 -0.88 
ALADIN-CLIMATE - HUGRID -1.41 -2.05 -0.56 -2.28 -0.72 

 
 

PRECIPITATION 
BIAS [mm/month] 

 
YEAR 

 
SPRING 

 
SUMMER 

 
AUTUMN 

 
WINTER 

ALADIN-CLIMATE – CRU10’ 18.75 33.42 49.96 -8.52 0.17 
ALADIN-CLIMATE - HUGRID 18.65 32.09 50.91 -7.45 -0.31 

 
 

TEMPERATURE 
RMSE [C] 

 
YEAR 

 
SPRING 

 
SUMMER 

 
AUTUMN 

 
WINTER 

ALADIN-CLIMATE – CRU10’ 1.55 2.17 0.89 2.71 1.26 
ALADIN-CLIMATE - HUGRID 1.46 2.09 0.83 2.33 1.17 

 
 

PRECIPITATION 
RMSE [mm/month] 

 
YEAR 

 
SPRING 

 
SUMMER 

 
AUTUMN 

 
WINTER 

ALADIN-CLIMATE – CRU10’ 20.96 35.68 54.17 14.75 11.26 
ALADIN-CLIMATE - HUGRID 21.17 34.64 55.55 14.83 12.82 
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5. Contribution by NIMH 
 
5. Contribution by NIMH: Localization and downscaling methods 
Statistical method is an alternative for downscaling. Some sophisticated interpolation 
methods like procedure 927 in ALADIN have ability to give more detailed structure of 
some fields like temperature and sea level pressure. The RCMs could be more effective 
when the space resolution is reduced substantially (downscaling). In this case we may 
expect some improvements due to: 

- more realistic impact of land surface fields and topography, 
- reduced approximation error and improved dynamics.  

That is proved by the numerical models for weather forecast and RCMs are expected to 
follow this practice but only if the resolution is high enough. Resolution of 50, 25 and 
even 15 km is not sufficient in a complex area like the domain used by NIMH. This was 
observed in some tests before starting operative numerical weather forecast in NIMH. 
The next figure illustrates that with 50 km resolution there is no Balkan Mountains at the 
Balkans (isolines are in decimeters). 

 
With a resolution of about 100 km of ERA40 there are no mountains, but the possibilities 
of a ‘jump’ to 10 km and reasonable response from this more detail topography was 
mentioned in “High resolution climate adaptation of ERA40 data over the Bulgarian 
domain” Spiridonov,V., Al. Braun, M. Deque, S. Somot, Prague 2004 and  “Climate 
version of the LAM ALADIN”, Somot S., Spiridonov V., P. Marquet., M. Deque, Prague 
200). On the next figure we could see how resolution of 10 km for the NIMH integration 
domain gives crucial details: 
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We may expect meaningful results of RCMs if the resolution respects regional features 
which are supposed to be important factors. We believe that 10 km resolution eventually 
is enough to identify the Balkan Mountains as a ‘circulation barrier’. Obviously 10 km 
resolution is not enough to describe breeze mechanism and its onshore influence. 
 
 
 
Verification 
The problem is that we have not observation network of 10 km. The CRU data are on 50 
km (even CRU 10 km is based on the same dataset) and we should downscale them or 
upscale results. We decided to use observations from stations situated in places affected 
by the land and topography characteristics and proportionally distributed. An important 
criterion is the quality and the period without breaks. We selected 56 stations shown in 
D3.2. The verification of the model ALADIN with ERA40 couplings is based on the 
mean values of these stations. The integration period is 1961-1990. 
 
 
 
 
For such kind of verification we need localization of fields (temperature and precipitation 
in this case). The method was described in D3.2. The idea is to minimize the interpolation 
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error. Let the interpolation operator is A. The problem is to find a transformation B of 
the field F (temperature, precipitation), so that: 

B F - A- (A+ B F) = min 
In this experiment as an interpolation operator A we used bilinear interpolation and 
below we present results both with linear (mentioned by L) localization and described 
method with preliminary transformation (marked by P). 
 
 
 
 
 
 
 

SEASONAL MEAN TEMPERATURE Co 
(1961-1990) 
TEMPERATURE 
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The localization using described preliminary transformation (red) leads to a less bias 
comparing to the direct interpolation but the simulations show cold bias for both type of 
interpolations. In spring (the figure below) the pattern is similar to the winter period. 
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This behavior is similar in summer and autumn (next two figures).  
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On the next tables bias and RMS are summarized for the whole period: 
 
 

BIAS 
 DJF MAM JJA SON 
E4O L -2.950021 -3.556981 -2.547015 -3.997964 
E40 P -2.105116 -2.184690 -1.163844 -2. 848402 
 

RMS 
 DJF MAM JJA SON 
E4O L 2.993014 3.630809 2.713115 4.061964 
E40 P 2.549860 2.223326 1.197082 2.984402 
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SEASONAL ACCOMULATED PRECIPITATION (mm/m2) 
(1961-1990) 

 
The simulations for the precipitation with ERA40 are good for the winter period (the 
figure below) 
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The importance of the localization method is more prominent in spring, but the 
simulations show wet bias. 
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In summer the correlation with the observations is good but the bias is positive again in 
all stations. The localization with the preliminary transformation gains advantage over the 
simple interpolation method. 
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In autumn the correlation for the both localization methods is good. The bias is small and 
positive for the simple interpolation method and negative for the interpolation with 
preliminary transformation. 
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Summarizing for the simulation period: 
 
 

 
BIAS 

 DJF MAM JJA SON 
E4O L -0.1409925 120.5004 200.6333 4.506385 
E40 P -7.695821 46.53494 148.4569 -8.089603 
 
 

RMS 
 DJF MAM JJA SON 
E4O L 28.97110 125.7602 209.3182 32.42067 
E40 P 32.86720 56.50699 158.3000 30.42797 
 
 
 
 
 
 
 
Conclusions 
 
With a given RCM we have two types of downscaling - in adaptation or in climate mode 
respectively. In adaptation mode we use initial condition for every day (even for 6 hours) 
from the GCM and ‘adapt’ for the next 6, 12 or 24 hours. In climatic mode the initial 
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conditions are set only once in the beginning of the simulation. Usually the model 
‘settles’ after one year integration. Actually the initial data are not important and this kind 
of simulation is called ‘climate mode’.  
 
1. ALADIN-CLIMATE model shows good correlation (seasonally year by year) with the 
observations in climate mode.  
 
2. The verification of the ALADIN-CLIMATE model using the ERA40 as lateral 
boundary conditions shows generally cold bias for the temperature and considerably big 
overestimation of precipitation during spring and summer.  
 
3. The importance of the localization method when verifying with real observation from a 
set of stations is illustrated in both cases, for temperature and precipitation respectively. 
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